

156

CUG 1995 Fall

 Proceedings

Shared File System Experiences

Denise Underwood-Hannagan

, DOD and

Patrick McQueeney

, CRI

ABSTRACT:

As our site’s disk space requirements grow, the ability to make data available
across systems, avoiding duplication, becomes an ever more important consideration. Therefore,
the concept of Shared File Systems (SFS) has become very attractive to our site. This paper
describes our experiences with CRI’s implementation of SFS as it has matured.

Introduction

As a site with multiple Crays, disk storage has a number of
inherent challenges. The typical users on most machines want
all of the space, so disk space is always in demand. Users with
accounts on multiple machines understandably want to have
access to their data from each machine. However, duplicating
data across machines is costly in terms of buying disks, main-
taining changes to the data across the machines, and backing up
the same data multiple times.

With these considerations in mind, CRI’s implementation of
Shared File Systems (SFS) became very attractive to our site.
SFS is a method of multiple machines sharing UNIX file
systems using semaphores through hardware connections to
common disk storage. SFS is an alternative to Network File
Systems (NFS) with the advantage of all machines being equal
with respect to the disks.

History

We first became involved with SFS as a test site for the
non-SSD implementation. We were using a network HiPPI disk,
ND14, as the shared media and a software version of a sema-
phore device. This semaphore device was a program that ran on
a Sun workstation and handled all the semaphore activities. We
were running at Unicos 7.C.3 plus numerous mods for the SFS
implementation. This initial effort was strictly a proof of
concept for our site.

Our next dealings with SFS came at Unicos levels 8.0.2 and
8.0.3. At Unicos 8.0.2 we reached the functionality we saw in
our initial testing but were now using the new HiPPI-based
semaphore device, H-SMP. The H-SMP is a Sparc-based device
produced by Performance Technologies, Inc. which includes an
S-bus HiPPI card. The H-SMP has the code necessary for sema-
phore functionality provided in a PROM. This H-SMP allowed
us more flexibility as we were able to put it directly on the
existing HiPPI network.

At Unicos 8.0.3, we saw improvements in performance and
stability, but still had challenges with SFS that prevented it from
being used in a production environment. With Unicos 8.0.4 plus
a set of stabilization mods, we reached a level where we felt that
the product would be beneficial to our user groups. At this point
our SFS filesystem was released to a small user community who
has been quite pleased with its flexibility and performance.

Configuration

Our implementation of CRI’s SFS consists of two Model-E
machines, one H-SMP, an ND14, and an existing HiPPI
network. The first machine, the semaphore box, and the ND14
are connected to the same NSC PS32 HiPPI switch. The second
system uses an additional PS32 and fiber optics in order to get
to the common HiPPI switch. (see Figure 1).

The ND14 was configured with 2 facilities, each made up of
a small RAID 1 partition and a large RAID 5 partition. We
decided to use one facility for the filesystem and one for the
shared lock region (SLR) and the shared mount table.

The filesystem itself was made up of a small Raid 1 primary
partition and a large Raid 5 secondary partition. Both partitions
were allocated with a sector size of 32K. The goal of this file-
system configuration was to use the primary partition strictly for
directory and filesystem meta-data allocations while the actual
data took advantage of the large sector size of the secondary
partition.

Immediate Findings

We set out in our initial testing to see where SFS may help
us. It seemed logical to try things that a typical user might try.
Most users do a great deal of changing directories, looking at
directories, copying files, and searching for strings in files. We
ran a set of tests consisting of

ls

,

find, grep,

and

 cpio

 commands
in both shared and non-shared modes. It was quickly ascertained
that SFS was not the medium to perform this typical filesystem
I/O. This type of filesystem I/O is the worst case for both the
ND14 and SFS so the combination was exponentially poor. The
tests ran in 102 seconds in non-shared mode and in 4000Copyright © Cray Research Inc. All rights reserved.

CUG 1995 Fall

 Proceedings

157

seconds in shared mode. It was obvious to us that the benefits of
SFS are not great enough to outweigh such a substantial perfor-
mance penalty. With this information in mind, we decided to
narrow the scope of our testing. We changed our focus to test
large block I/O which might be able to use more bandwidth of
the HiPPI channel.

Tests and Results

As we first looked into large block I/O, the initial thrust was
to see what kind of performance we could get and what size
buffer we would need to get that performance. We also wanted
to compare our SFS I/O rates to those of the non-SFS case. We
then looked to see if small changes in the program could reap
significant benefits in performance.

The program itself was a basic I/O program which would
double the buffer size on each iteration starting at 4K until it
reached 128Mbytes. It was also flexible enough to allow us to
pick and choose flags to be used on the file open and execute
different I/O strategies. This gave us the ability to try to find the
combination which yielded the greatest performance.

 We began by changing from buffered I/O to raw I/O. This
allowed us to bypass both library and systems buffers which
resulted in a dramatic improvement in performance. Notation
(A) in Figure 2 illustrates this benefit.

We also looked into the various locking mechanisms avail-
able to us. Read locks, write locks, and the exclusive open flag
would permit the SFS code to make certain assumptions about
the status of the file and any current users of the file. It also

would allow the host to reduce the inode overhead associated
with each read or write system call. This becomes important in
the SFS environment as very little buffering of filesystem
meta-data and inodes is done.

In our testing, the use of the different types of locks showed
a noticeable increase in performance. We saw an increase of as
much as 19 Mbyte/sec. Notation (B) in Figure 2 shows the
overall concept of using the locking mechanisms. We noticed an
interesting phenomena while reading a data file without a read
lock and no write permission. In this case, the SFS code adds the
read lock on the user’s behalf. This allowed the performance to
be improved with no changes to the actual application.

As the block size was increased and the file locking mecha-
nism was used, it did appear that the performance would be
extremely close to the device speed seen in a non-SFS environ-
ment. (See Figure 3). Once the buffer size reached 512 Kbytes,
the transfer rate reached about 9.5 Mbytes/sec. This really was
the minimum rate that would be acceptable to our user commu-
nity. The performance continued to increase until leveling off at
around 47 Mbytes/sec with a buffer size of 64 Mbytes. The
actual graph of both the SFS case and the non-SFS case shows
very little differences throughout all the changes in buffer size.

Now satisfied that the I/O rates for large block SFS transfer
were acceptable, we tried to come up with a testing scenario
which would reflect how our user community might actually use
the SFS filesystem. Standard procedure for our users is to have
one application writing a file and multiple processes reading a
file. It seemed to us that a producer/consumer relationship fit the

NSC

PS32

H-SMP
ND-14

Figure 1.

158

CUG 1995 Fall

 Proceedings

bill. One process would produce, or write, the file and multiple
consumers would consume, or read, the file. This would allow
true sharing of the data file itself.

All of the producer/consumer tests we ran used a buffer size
of 32Mbytes and a file size of 640Mbytes. Each producer or
consumer would use the appropriate lock mechanism and also
use raw asynchronous I/O.

We began with the simplest case. We had one producer and
one consumer that ran on the same host. The test yielded a
producer rate of 33.69 Mbytes/sec. and a consumer rate of 47.6
Mbytes/sec. The consumer rate reached the device speed we had
observed in previous testing.

Next, we expanded the scenario to include two additional
consumers from the same host. Each of the consumers reached a
performance rate of about 17 Mbytes/sec. This seemed to illus-
trate that the total bandwidth of the path to the device was being
shared. We then changed the scenario slightly to have two
consumers from two separate hosts. Each of the consumers ran
at about 24 Mbytes/sec. When we increased the number of
producers to two on both hosts, we saw a combined rate of 36
Mbytes/sec for each host. In the cases tested, it appeared that the
bandwidth was being shared equally.

As we continued to increase the number of consumers from
each host, we did see points where there was significant compe-
tition for both the HiPPI channel and other SFS resources. One
consumer “gets control” of the HiPPI channel, gets its request
out for the inode semaphore then starts its I/O. The other

consumers are then competing for both the channel and the inode
semaphore before starting their I/O. We modified the test
program slightly to allow all the consumers to get the read lock
and then wait until the other consumers can also get the read
lock. We believe that the competition for the HiPPI channel was
now only for I/O instead of semaphore activity. The actual
performance we saw was about 6.5 Mbytes/sec. which is not as
high as we might have hoped but we have to live with the
constraints of system resources.

These results forced us to re-evaluate the scope of our testing.
We acknowledged that our testing may not be an actual repre-
sentation of the “real life” usage of the SFS. It does seem
unlikely that once a file has been produced that multiple
consumers will try to use the same file at exactly the same
instant. Hence, the competition for the same file should be less
significant.

Opportunities

SFS at Unicos 8.0.4 has proven to be a useful product. In
order to get to this point, we have seen our share of problems.
We currently have one outstanding problem which we have been
able to work around. This problem can occur when a host
starting SFS fails to detect the live members of the SFS cluster.
It then makes the assumption that it is the only member of the
cluster and clears most of the SFS infrastructure. This clear can
result in a panic of the actual live systems in the cluster. The

(B)

(A)

Figure 2:

CUG 1995 Fall

 Proceedings

159

temporary fix is to prevent the SFS daemon,

sfsd

, from being
started with the clear flag.

Another problem we encountered was actually an intended
feature of the system. When the hosts could not reach the
H-SMP, they would panic. This reaction was not acceptable at
our site—we prefer not to have machines crashing just because
the network is down. This, and other problems, have been
resolved through a set of mods to Unicos 8.0.4

Conclusion

Overall, the system users have been pleased with the perfor-
mance and flexibility that SFS does provide. We realize it has
limits and cannot be used to solve all of the challenges in a
shared data computing environment. Yet, for applications that
read and write large data blocks and require access to common
data sets, SFS can provide the capability to reach the data set and
allow a more efficient and economical use of disk space.

Figure 3:

