

CUG 1995 Fall

 Proceedings

193

UNICOS Kernel Internals Application Development

Nicholas P. Cardo

, Sterling Software, Inc., Numerical Aerody-
namic Simulation Facility , NASA Ames Research Center, M/S
258-6, Moffett Field, CA 94035-1000

ABSTRACT:

Having an understanding of UNICOS Kernel Internals is valuable information.
However, having the knowledge is only half the value. The second half comes with knowing how
to use this information and apply it to the development of tools. The kernel contains vasts
amounts of useful information that can be utilized. This paper discusses the intricacies of devel-
oping utilities that utilize kernel information. In addition, algorithms, logic, and code will be
discussed for accessing kernel information. Code segments will be provided that demonstrate
how to locate and read kernel structures. Types of applications that can utilize kernel informa-
tion will also be discussed.

The UNICOS kernel is large, complicated and tracks a
tremendous amount of information. Automated system moni-
toring tools can be developed to utilize kernel information for
early detection of problems and make notifications or take
appropriate actions.

The kernel is defined as

“The central controlling program
that provides basic system facilities. The UNIX kernel creates
and manages processes, provides functions to access the file-

system, and supplies communication facilities.”

1

 Many people
have a fear about accessing the kernel directly due to its
complexities, when in its simplest definition, the kernel is just a
large program.

1 Approaches

There are a couple of methods to use for extracting informa-
tion from the kernel.

• System Calls.

• Read Tables.

• Direct kernel access.

1.1 System Calls

System calls can be used to obtain a large amount of useful
information. In particular, information about the executing
process or system configuration information can easily be
obtained with system calls. Using system calls for this type of
information is actually more efficient than reading the kernel
and parsing the information. Some useful system calls are:

sysconf(2) getjtab(2) pathconf(2)

getpid(2) limit(2)

The kernel maintains pointers which speed access to relevant
information about a process or job. Additionally, the system call
interface is the simplest method of obtaining kernel informa-
tion. However, using system calls provides only a limited
amount of information.

1.2 Reading Tables

Two system calls,

tabinfo()

 and

tabread()

, are
designed to read kernel tables with a simple and easy to use
interface. The only drawback to using these is that they can only
access the table specified. Many table structures contain
pointers to other kernel structures, which cannot be traversed
using this method. The list of tables that can be accessed
through this method are provided in

<sys/table.h>

.
This method involves two steps. The first step is to retrieve

information about the table. This is accomplished with the

tabinfo()

 system call. The second step is to actually read
the table with

tabread()

. For better performance, the entire
table should be read with one read operation when possible.

For example, suppose an application needs to scan the
process table to produce a report or to search for a process. This
can be done with the following:

tabinfo(PROCTAB,&tbl_info);
tbl_size = tbl_info.head + (tbl_info.ent

*tbl_info.len);
tbl = (char *)malloc(tbl_size);
tabread(PROCTAB,tbl,tbl_size,0);

The

tabinfo()

 call retrieves information about the
process table, such as number of entries, length of each entry
and the address of the table. Not only is the information used for

tabread()

, but it is useful for creating a buffer to hold the

194

CUG 1995 Fall

 Proceedings

table. The total size of a buffer to hold the table is calculated by
multiplying the number of table entries by the size of an entry,
then adding in the size of the table header. The

tabread()

 call
will then read the entire process table into the buffer. At this
point any processing can be done on the copy of the table in the
buffer. If the process table was read one entry at a time, it is
highly likely that it will have changed by the time processing is
complete.

1.3 Direct Kernel Access

In UNIX, everything can be considered a file, and accessed
with normal file I/O routines. The kernel is no different and can
be accessed directly through the device inode for the kernel,

/dev/kmem

. Since this permits access to the running system,
caution should be exercised when accessing it. Not only can the
running system be corrupted, but system performance can be
impacted. Following a few rules when accessing

/dev/kmem

can keep from having major system problems or performance
degradation.

• Open the kernel readonly.

• Perform as few I/O operations as possible.

• Check return codes and pointers.

The first step to opening the kernel is to verify access to it.
This can be done with the

access()

 system call. The
following code verifies read access to

/dev/kmem

.

if(access(“/dev/kmem”,R_OK)) {
fprintf(stderr,”%s\n”,

sys_errlist[errno]);
exit(1);

}

Provided access is permitted, the next step is to actually open

/dev/kmem

. This can be done with the following code.

if((fd=open(“/dev/kmem”,O_RDONLY)) == -1) {
fprintf(stderr,”%s\n”,

sys_errlist[errno]);
exit(1);

}

A function can be written to perform both operations and
return either a -1 for a failure or the file descriptor for a
successful open.

#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>

int opn_kernel()
{
int fd;

/*
 * Check for read access on /dev/kmem
 */
if(access(“/dev/kmem”,R_OK))

return(-1);

/*

 * Open the kernel readonly
 */
fd = open(“/dev/kmem”,O_RDONLY);
if(fd == -1)

return(-1);

return(fd);
}

Both

access()

 and

open()

 will set

errno

 to indicate
the appropriate reason for the failure. Opening the kernel can
now be simplified as:

if((fd=opn_kernel()) == -1) {
fprintf(stderr,”%s\n”,

sys_errlist[errno]);
exit(1);

}

At this point, the integer file descriptor can be used to seek to
various locations within kernel memory to retrieve tables.

2 Locating Symbols

It may be necessary at times to locate symbols within the
kernel to extract their values. System tables can also be located
by their symbol name. Locating symbols in the kernel is accom-
plished by utilizing

nlist()

.
Symbol tables are a part of any

a.out

 structured file and are
stored in the global name table (GNT) of the

a.out

 file. The
kernel is an executable similar to

a.out

 and contains symbols
in the GNT. To accurately identify all the symbols, a program
would be necessary to display all the symbols in the GNT for the
kernel. The command

/bin/nm

 can be used to display all the
valid symbols for the kernel. For example:

$ nm /unicos

will display all symbols and their byte addresses for the kernel.
However if only a few symbols are needed, the symbol names

can be extracted from header files. Contained within header files
is a section which identifies kernel specific declarations. This
section of the header file is identifiable by

#ifdef KERNEL

.
External declarations within this section are actually identifying
symbol names.

For example, suppose there is interest in the

var

 table. The
first step is to look at the header file

<sys/var.h>

 and locate
the kernel specific declarations.

#ifdef KERNEL
extern struct var v;
#endif

This identifies the symbol

v

 as the

var

 table in the kernel.
The

/etc/crash

 command can be used with it’s

nm

command to display symbols and their word addresses. To
verify that

v

 is a valid symbol:

/etc/crash
> nm v
v 06373435 common memory

Using

/bin/nm

 yields:

$/bin/nm /unicos
...

CUG 1995 Fall

 Proceedings

195

63734350 T v
...

which indicates byte address 63734350 octal where

crash

displays word address 06373435 octal.
Once the symbol name is known, it is possible to convert that

symbol to its address. The

nlist()

 function will fill in an

nlist

 structure which contains the address of the symbol. The
address returned in the

nlist

 structure is the byte address of
the symbol whereas the length of the space pointed to by the
symbol is returned in words. The system macro

wtob()

 can be
used to convert words to bytes. The following code returns

0

upon success and a

-1

 upon error.

#include <stdio.h>
#include <sys/types.h>
#include <nlist.h>
#include <errno.h>
#include <sys/param.h>
#include <sys/sysmacros.h>

static struct nlist nl[] = {
{ ““ },
{ ““ },

};

/*
 * Return the address of an entry from
 * the symbol table
 */
int getsym(symname,sz,ad)
char*symname;
int*sz;
int*ad;
{
intret;

nl[0].n_name = symname;

/*
* Locate the symbol in the kernel
*/
if((ret=nlist(“/unicos”,nl)) == -1)

return(-1);

/*
* Did it return an address
*/
if(nl[0].n_value == 0) {

errno = EFAULT;
return(-1);

}

*sz = wtob(nl[0].gse_blen);
*ad = nl[0].n_value;

return(0);
}

For example, to retrieve the address of the

var

 table with this
function would be accomplished as follows:

if((ret=getsym(“v”,&sz,&addr)) == -1) {
fprintf(stderr,”%s\n”,

sys_errlist[errno]);
exit(1);

}

3 Reading /dev/kmem

Two pieces of information are needed to read kernel informa-
tion; location and size. After opening the kernel, the next step is
to go to the location desired and retrieve the information.

Positioning at a symbol for reading can be accomplished with

lseek()

. Note that for both

lseek()

 and

nlist()

, the
address is specified in bytes, so no conversion is necessary. If the
address is a word address, use

wtob()

 to convert the word
address to a byte address.

Once positioned at the proper address, the information can be
retrieved using

read()

.
The following code shows how lseek() and read() can be

utilized to retrieve information from the kernel.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <errno.h>

/*
 * Seek to an address and read
 */
int kread(buf,addr,sz,fd)
char *buf;
word addr;
word sz;
int fd;
{
int ret;

/*
 * Seek to the address
 */
if((ret=lseek(fd,addr,SEEK_SET)) == -1)

return(-1);

/*
 * Read sz bytes from addr
 */
if((ret=read(fd,buf,sz)) != sz) {

errno = EIO;
return(-1);

}

return(0);
}

For example, to read the

var

 table based on the information
returned by

getsym()

 would be accomplished with the
following:

if((ret=kread(buf,addr,sz,fd)) == -1) {

196

CUG 1995 Fall

 Proceedings

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

close(fd);
exit(1);

}

The function

kread()

 can be utilized to retrieve entire
tables, a single entry within a table or even just 1 word from
kernel memory.

4 Putting the Pieces Together

The individual components for accessing kernel information
have each been discussed separately. Applications can be devel-
oped utilizing these basic components.

For example: suppose that there is a need to extract the
number of process slots from the running kernel. This count is
stored in the

v_proc

 field of the

var table. So the application
needs to read the var table from the kernel and display the field
v_proc .

4.1 Reading Tables
This method utilizes tabread() and tabinfo() to read

the var table. Reading is accomplished in two steps: obtain
necessary information and actual reading. tabinfo() is used
to obtain information about the var table including its address
and size. This information is utilized by tabread() to actually
read the table into a buffer for processing.

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/table.h>
#include <sys/var.h>

main()
{
structtbs tbl_info;
char *tbl;
long tbl_size;
structvar *v;

/*
 * Obtain information about the
 * var table
 */
if(tabinfo(V,&tbl_info) == -1) {

perror(“tabinfo”);
exit(1);

}

/*
 * Calculate the size of the table
 * and allocate a buffer for the table
 */
tbl_size = tbl_info.head +

(tbl_info.ent*tbl_info.len);
if((tbl=(char *)malloc(tbl_size))

== NULL) {
perror(“malloc”);
exit(1);

}
/*
 * Read the table
 */
if(tabread(V,tbl,tbl_size,0) == -1) {

perror(“tabread”);
free(tbl);
exit(1);

}

/*
 * Print the desired field
 */
v = (struct var *)tbl;
printf(“Process slot count = %d\n”,

v->v_proc);

free(tbl);
exit(0);

}

4.2 Reading /dev/kmem
This method will use the routines previously discussed for

opening and reading kernel memory. There are three steps to
acommplishing this: get the address of the table, open the kernel
and last to seek and read the table into a buffer.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/var.h>

main()
{
int fd;
int addr;
int ret;
int sz;
char *tbl;
structvar *v;

/*
 * Get the address and size of the
 * var table whose symbol is “v”
 */
if((ret=getsym(“v”,&sz,&addr)) == -1) {

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

exit(1);
}

/*
 * Allocate a buffer large enough
 * to hold the var table
 */
tbl = malloc(sz);
v = (struct var *)tbl;

/*

CUG 1995 Fall Proceedings 197

 * Open the kernel for reading
 */
if((fd=opn_kernel()) == -1) {

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

free(tbl);
exit(1);

}

/*
 * Read the table based on information
 * obtained from getsym()
 */
if((ret=kread(tbl,addr,sz,fd)) == -1) {

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

free(tbl);
exit(1);

}

printf(“v_proc = %d\n”,v->v_proc);
free(tbl);
exit(0);

}

5 Developing Applications

Most applications that utilize kernel internal information only
require a small amount of information to make the application
complete. There are very few applications, usually diagnostic or
system monitoring, that are completely based upon kernel
internal information.

To help illustrate the principles of developing successful
applications, a utility will be developed. The task is to develop
an application that can determine the current load on the system
at that instance and that it is not necessary to take samples and
average. Each step of the design and development process will
be discussed to give an overall picture of the process.

5.1 Step #1: The Need
The first step to developing applications that access kernel

information is to clearly identify what is needed. Unnecessary
seeks and reads in the kernel can impact performance.

Once the target information is clearly identified, the next part
is to determine if reading the kernel is necessary. Large amounts
of information are available through other means. For example,
suppose it was necessary to determine the configured maximum
number of users for the running kernel. This information is
contained in the field v_users in the var table. However,
rather than reading the entire table for this one field, there is a
much simpler method to obtain it,
sysconf(_SC_MAX_NUSERS) . So it is possible to get some
information out of the kernel without any complicated coding.
By using sysconf() , not only is the code much simpler, but
also easier to support and maintain.

Fully understanding the information needed is the key to
developing well written and easily maintained programs. Also to
be considered is the scope and quantity of information. It is very

easy to turn a small application into a memory hog. Another
important consideration is performance. Avoid large numbers of
I/O operations when possible when accessing elements within a
single table. Let’s suppose that an application needs to gather
statistics from all the running processes in the system. There are
two options; access the process slots 1 at a time or read the entire
process table into a buffer then step through the entries. The
better solution is to read the entire process table in 1 read opera-
tion. Not only for performance reasons but also for accuracy.
Just because an application needs to see the information, doesn’t
stop the kernel from updating its tables. Obtaining all the infor-
mation in one read operation will minimize any discrepancies in
the data.

5.1.1 Justifying The Need
A starting point would be the systems load average.
“A measure of the CPU load on the system. The load

average in 4.3BSD is defined as an average of the number
of processes ready to run or waiting for disk I/O to
complete, as sampled over the previous 1 minute interval of

system operation.”2

Since there is no requirement for sampling or averaging over
a time delta, all that is needed is an instantaneous reading.

Applying this to UNICOS, the application needs to count
how many processes exist on the the run queue not connected to
a processor. In other words, how many processes have a state of
SRUN. The process state is stored in the p_stat field of the
proc structure. This information can be obtained by examining
<sys/proc.h> . So, the application needs to read the process
table and count all processes with p_stat equal to SRUN.

5.2 Step #2: The Commitment
Once the need has been determined, a desire to program and

maintain the application is needed. The next major release of
UNICOS can bring changes to kernel structures that affect
locally developed applications. However, if the application is
well written, there would be minimal to no application updates
necessary. Most of the information an application would use is
typically stored in a way that the need for changes are rare.
Taking the necessary steps during development to ensure a long
lived application can save time and eliminate unnecessary
turmoil during system upgrades. Also, with the exception of
architecture specific information, the kernel accesses are
portable across UNICOS systems. A commitment to quality
should always be a part of the development process. Poorly
written code will only bring problems down the road.

5.2.1 Applying the Commitment
“System programmers never turn down a challenge, afterall, it’s
only software.” 3 And thus the commitment to the product is
established.

5.3 Step #3: The Method
It’s now time to take the plunge. As previously discussed,

there are three methods to access kernel information. It is neces-
sary to select the method for extracting information, keeping in

198 CUG 1995 Fall Proceedings

mind the best solution might be a combination of the three
methods. All methods have advantages and disadvantages.

5.3.1 System Calls
Although using system calls has the simplest interface, they

are limited to what that can access. Typically they can be used
effectively to obtain information about the executing process or
the system itself.

In the case of the example program, this information is not
directly obtainable.

5.3.2 tabinfo()/tabread()
Here simplicity is the main advantage. All the work of

locating the table and accessing it have been integrated into these
two functions.

However, the disadvantage is lack of versatility and control.
The use of this method is limited to accessing only the tables
identified in <sys/table.h> . Another limiting factor is that
there is no movement permitted within the kernel. This method
is unable to traverse a pointer in a table to another structure.
Most useful information is typically contained within the major
tables and traversing pointers is usually not necessary.

The example program requires that all process table entries be
read. Having this simple requirement affords the ability to use a
less complicated method of obtaining the information. The
example program fits the profile perfectly of an application to
best utilize this method.

5.3.3 /dev/kmem
By adding a little complexity, great versatility is achieved. By

opening and reading /dev/kmem , there are no limitations to
accessing the data. Pointers are easily followed and tables are
easily located. The down side to this is that to achieve this capa-
bility, additional code is necessary to open the kernel, locate
tables in the kernel and read the kernel.

Complexity is not part of the example program. Therefore,
the added advantages of using this method are not needed. This
would not be the best method to choose for the example
program.

5.3.4 Which to Choose
It can be a difficult decision to choose the proper access

method. Generally speaking, if the amount of information
needed from the kernel is small and contained in a major table,
then choose the tabinfo() /tabread() method. However,
if vasts amount of information are needed from various kernel
tables or if pointers need to be traversed, then choose the
/dev/kmem method. When accessing large amounts of infor-
mation from various tables, some performance improvements,
such as caching, can be built into the /dev/kmem method.

Keeping applications simple and easy to maintain only makes
for a better application. In the case of the example program, there
is no complexity to the application. The information needed is
clear and can easily be retrieved. Accessing /dev/kmem
directly for this application would not be the best choice. And

since the information is not readily available from a system call,
the only choice is to utilize tabinfo() and tabread() .

5.4 Step #4: The Integration
Building the kernel access routines into an application does

not have to be an epic event. Here are a few tips on making this
a simple and easy to do task.

• Build the application modular. This way the kernel access
components can “plug-n-play”.

• Use a stub program to develop the kernel access routines.
This way application development won’t have to stop and
wait while the kernel routines are debugged.

• Use the “In-n-Out” approach to accessing the kernel. In
other words, go in, get the information then get out.

As with any development effort, avoid last minute changes.
Accessing kernel information should be well planned out. Short
cuts taken are potential system problems.

5.4.1 Integrating the Components
Now that the requirements and method of choice have been

layed out, putting it all together is the next step. Putting the
pieces together to build the application yields the following
program:

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/table.h>
#include <sys/aoutdata.h>
#include <sys/cred.h>
#include <sys/proc.h>
#include <errno.h>

main()
{
struct tbs tbl_info;
char *tbl;
long tbl_size;
struct proc *p;
int x,srun=0;

/*
 * Read the process table information
 */
if(tabinfo(PROCTAB,&tbl_info) == -1) {

perror(“tabinfo”);
exit(1);

}

/*
 * Allocate a buffer
 */
tbl_size = tbl_info.head +

(tbl_info.ent * tbl_info.len);
if((tbl=(char *)malloc(tbl_size))

== NULL) {
perror(“malloc”);

CUG 1995 Fall Proceedings 199

exit(1);
}

/*
 * Read the entire process table
 */
if(tabread(PROCTAB,tbl,tbl_size,0)

== -1) {
perror(“tabread”);
free(tbl);
exit(1);

}

/*
 * Loop through the buffer looking
 * for SRUN processes
 */
p = (struct proc *)tbl;
for(x=0;x<tbl_info.ent;x++) {

if(p->p_stat == SRUN)
srun++;

p++;
}
free(tbl);
printf(“The current load is %d\n”,srun);
exit(0);

}

5.4.2 Contrasting Approach
To illustrate the extra steps required for reading kernel infor-

mation from /dev/kmem directly, the example program has
been rewritten utilizing that approach.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/aoutdata.h>
#include <sys/sema.h>
#include <sys/cred.h>
#include <sys/proc.h>

main()
{
int fd;
int addr;
int ret;
int sz;
int entries;
int srun = 0;
int x;
struct proc *pptr;
char *buf;

/*
 * Locate the proc table
 */
if((ret=getsym(“proc”,&sz,&addr))== -1){

fprintf(stderr,”%s\n”,

sys_errlist[errno]);
exit(1);

}

/*
 * Open the kernel
 */
if((fd=opn_kernel()) == -1) {

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

exit(1);
}

/*
 * Allocate a buffer for the proc table
 */
buf = malloc(sz);

/*
* Read the proc table
*/
if((ret=kread(buf,addr,sz,fd)) == -1) {

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

free(buf);
exit(1);

}

/*
 * Important to close /dev/kmem
 */
close(fd);

/*
 * Loop through the buffer looking for
 * SRUN processes
 */
entries = sz / sizeof(struct proc);
pptr = (struct proc *)buf;
for(x=0;x<entries;x++) {

if(pptr->p_stat == SRUN)
srun++;

pptr++;
}

free(buf);
printf(“The current load is %d\n”,srun);
exit(0);

}

Taking into consideration the coding required for accessing
and reading the kernel, this method is larger and more compli-
cated to maintain. Not only does this code need to be maintained,
but also the code for getsym , opn_kernel and kread .

5.5 Step #5: The Product
Completing steps 1-4 will result in step five, the final product.

Exercising caution during design and development will lead to a
stable and safe final product.

200 CUG 1995 Fall Proceedings

5.5.1 Applying The Product
The final product has been produced. The application will

count successfully and safely the number of processes on the run
queue not connected to a processor for a single instance in time.
The application is layed out well and will be easy to maintain
during its service.

6 Can’t Get There From Here

Kernel memory has a complex structured organization with
multiple entry points. If it is stored in kernel memory, there’s a
way to get to it.

The starting point for getting to any piece of kernel informa-
tion would be a kernel table. From here, following pointers to
other structures will eventually lead to the piece of information
desired.

The possiblility exists that only a single entry from an associ-
ated table is needed. Typically when an entry in a kernel table is
associated with an entry in another kernel table, a pointer in the
structure is usually supplied. This eliminates the necessity to
read a second table and search for the appropriate entry.

6.1 Example
An example application of traversing kernel pointers could

the necessity to access the session table entry for a particular
process. Once the process is located, the session table entry for
that process needs to be located.

Each process table entry contains a pointer to its appropriate
session table entry. This pointer is actually contained within the
pcomm structure in the process table entry. The address of the
session table entry can be found in the field
p->p_pcomm.pc_sess .

The following program demonstrates accessing the session
table entry for a particular process. In this example, the goal is to
display the total cpu time used by the session associated with a
specified process.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/aoutdata.h>
#include <sys/sema.h>
#include <sys/cred.h>
#include <sys/proc.h>
#include <sys/session.h>
#include <sys/sysmacros.h>
#include <sys/machd.h>

main(argc,argv)
intargc;
char**argv;
{
int fd;
int addr;
int ret;
int sz;
int entries;

int srun = 0;
int x;
struct proc *pptr;
char *buf;
int found = 0;
struct sess se;

/*
 * Was the target process specified
 */
if(argc == 1) {

fprintf(stderr,
”process name required\n”);

exit(1);
}

/*
 * Locate the proc table
 */
if((ret=getsym(“proc”,&sz,&addr))== -1){

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

exit(1);
}

/*
 * Open the kernel
 */
if((fd=opn_kernel()) == -1) {

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

exit(1);
}

/*
 * Allocate a buffer for the proc table
 */
buf = malloc(sz);

/*
 * Read the proc table
 */
if((ret=kread(buf,addr,sz,fd)) == -1) {

fprintf(stderr,”%s\n”,
sys_errlist[errno]);

free(buf);
exit(1);

}

/*
 * Look for the process
 */
entries = sz / sizeof(struct proc);
pptr = (struct proc *)buf;
for(x=0;x<entries;x++) {

if(!strcmp(pptr->p_comm,argv[1])) {
found++;
break;

}

CUG 1995 Fall Proceedings 201

pptr++;
}

/*
 * Make sure process was found
 */
if(!found) {

close(fd);
free(buf);
fprintf(stderr,

”process %s was not found\n”,
argv[1]);

exit(1);
}

/*
 * Read the session table entry
 */
addr = wtob(pptr->p_pcomm.pc_sess);
if((ret=kread(&se,addr,sizeof(se),fd))

== -1){
fprintf(stderr,”%s\n”,

sys_errlist[errno]);
free(buf);
exit(1);

}

/*
 * Important to close /dev/kmem
 */
close(fd);

/*
 * Print out the results
 */
printf(“Process %s (%d) is in “

“session %d which used %d seconds\n”,
argv[1],pptr->p_pid,se.s_sid,
((se.s_ucputime +
se.s_scputime)/HZ));

/*
 * Release allocated memory
 */
free(buf);
exit(0);

}

7 Application Types

There are two distinct classes of applications requiring kernel
information; user and system.

7.1 User
User applications can be broken down into two subclasses; user
applications and system level user applications. The difference
being a users program versus a system program for users use.

7.1.1 User Application

The chances that an appliction of this type would need to
access the kernel is very rare. Typically any information
required can be obtained through system calls. An example of
the type of information that might be needed would be informa-
tion about resources which can be obtained from the session
table. In this case using getjtab() would be sufficient.

7.1.2 System Level User Application

These types of applications are more likely to have a need to
access kernel information. However, in most cases, the informa-
tion can be obtained from system calls. An example of this type
of application could be an anonymous ftp server that won’t
permit usage if the systems load gets too high.

7.2 System

The majority of applications utilizing kernel information
would fall into this category. Typical applications would be for
system monitoring or performing diagnostics.

An example of this application at NAS would be a utility
called top . It provides detailed information about the current
processes in the system. Figure 1 shows a display from top that
refreshes at specified time intervals. As can be seen, it provides
very detailed information about the existing processes in the
system. It is also capable of displaying session information.

8 Where To Go From Here

Applications are only limited to what the mind can think of.
All information about the system can be obtained and utilized to
create system monitoring and debugging tools. Some useful
applications might be:

• process/session monitoring utility

• reset disk error counts without rebooting

• monitor for down, wdwn or sdwn tape drives

• monitor disk errors

• monitor multitasking jobs

9 Summary

This paper has shown safe and easy to maintain methods of
extracting information from the kernel. Additionally, it has
shown how to utilize this information into application develop-
ment.

The main goal of this paper was to de-mystify the process of
accessing the kernel. Detailed examples have been used to illus-
trate the ease of writing such applications. Once the application
has been thought of, the rest is only software.

United States sites are welcome to visit NAS on the web at
URL http://www.nas.nasa.gov . Contained within it is
a software archive full of useful applications. The author can be
reached at cardo@nas.nasa.gov for additional informa-
tion.

202 CUG 1995 Fall Proceedings

10 References

[1] Samuel J. Leffler, Marshall Kirk McKusik, Michael J. Karels, John S. Quar-
terman. The Design and Implementation of the 4.3BSD UNIX Operating Sys-
tem, Addison-Wesley, p 428, 1989.

[2] Samuel J. Leffler, Marshall Kirk McKusik, Michael J. Karels, John S. Quar-
terman. The Design and Implementation of the 4.3BSD UNIX Operating Sys-
tem, Addison-Wesley, p 429, 1989.

[3] Nicholas P. Cardo.

[4] Samuel J. Leffler, Marshall Kirk McKusik, Michael J. Karels, John S. Quar-
terman. The Design and Implementation of the 4.3BSD UNIX Operating Sys-
tem, Addison-Wesley, 1989.

[5] Maurice J. Bach. The Design of the UNIX Operatng System, Prentice-Hall,
1986.

[6] UNICOS C Library Reference Manual, SR-2080 8.0, Cray Research Inc.

[7] UNICOS System Calls Reference Manual, SR-2012 8.0, Cray Research Inc.

Swap (MW): 2.678 in, 0.000 out 226 users vn 14:23:16 PDT

16 cpus: 0.0% idle 88.0% user 12.0% sys

PID USERNAME TT/Q PRI NICE SIZE STATE CPU LIMIT %CPU MT COMMAND
89627 username batch 563 -2 151070 runF 4899 5500 50.18% command
78300 username batch 868 -2 148178 run 6644 14400 49.42% command
40890 username batch 452 -2 98910 runB 13996 19000 77.61% command
90942 username batch 776 -2 90328 run 4776 14400 71.95% command
20450 username batch 569 -2 63212 runE 614 5990 47.88% command
33311 username dfr 997 19 47470 run 5972 7200 0.00% command
54138 username dfr 997 19 40280 run 4239 7200 0.00% command
95528 username batch 765 -2 38852 runH 3736 7200 81.98% command
86070 username dfr 997 19 35824 run 1786 7200 0.00% 4 command
86073 username dfr 997 19 35824 run 1473 7200 0.00% 4 command
86071 username dfr 997 19 35824 run 1473 7200 0.00% 4 command
86072 username dfr 997 19 35824 run 1464 7200 0.00% 4 command
54332 username dfr 997 19 32258 run 4893 7200 0.00% command
80995 username dfr 997 19 28726 run 612 7000 0.00% command
97580 username batch 556 -2 26724 runP 3805 28800 44.51% 4 command
97581 username batch 39 -2 26724 slp 0 28800 0.00% 4 command
97582 username batch 39 -2 26724 slp 0 28800 0.00% 4 command
97583 username batch 39 -2 26724 slp 0 28800 0.00% 4 command
19086 username dfr 997 19 25498 run 2320 7200 0.00% command
20409 username batch 859 -2 23642 run 736 14400 65.42% command
35260 username dfr 997 19 23054 run 6063 7200 0.00% 4 command
35261 username dfr 39 19 23054 slp 0 7200 0.00% 4 command
35262 username dfr 39 19 23054 slp 0 7200 0.00% 4 command
35263 username dfr 39 19 23054 slp 0 7200 0.00% 4 command
85205 username dfr 997 19 20418 run 3126 7196 0.00% command
47735 username batch 530 -2 15710 runK 9189 14000 44.24% command

1018.0 MW Mem: 45.3 Free 972.7 Used 87.4 Swap Up 7+17:07:16 p 1
796 procs: 726 sleep, 48 run, 4 zomb, 2 susp, 4 big, 598 swap, 44 low-p

Figure 1: top display.

