

CUG 1995 Fall

 Proceedings

313

A New Approach to Increase Parallelism for
Dependent Loops

Yeong-Sheng Chen

, Department of Electrical Engineering,
National Taiwan University, Taipei 106, Taiwan,

Tsang-Ming
Jiang

, Arctic Region Supercomputing Center, University of
Alaska, Fairbanks, AK 99775, and

Sheng-De Wangj

, Depart-
ment of Electrical Engineering, National Taiwan University,
Taipei 106, Taiwan

ABSTRACT:

Loops are the primary source of parallelism in parallel processing. Two itera-
tions in a loop are flow dependent if the results computed at one iteration are used by the other.
Otherwise, they are independent. Independent iterations in loops can be scheduled in any orders
or partitioned to any processors without explicit synchronizations. For dependent iterations,
they are partitioned into sets (one or many) such that iterations in different sets are independent
(e.g., the minimum distance method). These sets can be executed in parallel without explicit
synchronizations. The degree of parallelism is the number of sets. This paper presents a new
approach which can significantly increase the parallelism by adding appropriate synchroniza-
tions. The implementation feasibility and performance benefits of this approach are demon-
strated on the CRAY MPP which has very fast synchronization mechanisms.

1 Introduction

Loops provide the most fruitful source of parallelism for
parallel processing systems. So, it is well recognized that one of
the most crucial problems for parallel execution of programs on
multiprocessor systems is to partition loops into independent
groups so as to exploit parallelism within loops [2-6], [8-14].
Since synchronization overhead among processors will deterio-
rate the performance, many researches are focused on the devel-
opment of techniques for partitioning nested loops so that when
the loops are executed no synchronization among processors is
incurred [3], [8], [12]. Minimum distance method is a typical
example. It partitions loops into totally independent sets of
computations. Each set of computations is then assigned to a
processor. All the sets can be executed in parallel without
explicit synchronization.

However, in practical implementation on distributed
memory multiprocessor systems, no synchronization among
processors does not imply no data communication among
processors. If the computations that can be executed in parallel
are not aggregated in a regular region of fixed size and shape,
then it is very difficult to partition the data so that there is no
data communication among processors. Mostly, data distribu-
tion can be done only in block or cyclic manner [7]. So, for an

arbitrary independent set of computations that are executed in a
particular processor, it is very difficult to distribute all the corre-
sponding data to the same processor so that there is no need to
access data located in other processors. In other words, although
all the computations are partitioned into independent sets, in prac-
tice, there will exist data communications among processors.

Observing the above facts, in this paper, we pay our atten-
tions to another important factor which can enhance perfor-
mance— exploiting more parallelism. We add barrier
synchronizations into loops to increase the degree of paral-
lelism. Barrier synchronizations are very efficient in the distrib-
uted memory multiprocessor systems that have hardware
support for them. For example, Cray T3D MPP has such a
mechanism [1]. We propose an method to aggregate as many
independent computations as possible into a block for maxi-
mizing parallelism. At first,

all

 the computations that are inde-
pendent when the loops just begin their execution are identified.
They are called initially independent computations. We show
that

all

 the initially independent computations can be aggre-
gated into rectangular blocks. So, based on them, the original
loops can be partitioned into rectangular blocks to maximize
parallelism. The corresponding computations of a block is
assigned to different processors for parallel execution. A barrier

314

CUG 1995 Fall

 Proceedings

synchronization is added in the end of each block, and all blocks
are executed sequentially.

In the proposed method, since each partitioned region is
block-shaped, the parallel code generation is straightforward and
easy. And, it is very likely that when the loops are partitioned
into blocks, there is better chance to distribute data into proces-
sors so that data communication among different processors is
minimized. (Mostly, data distribution can be done only in block
or cyclic manner.) Some experiments are conducted on CRAY
T3D MPP. As will be discussed in Section Four, it demonstrates
the implementation feasibility and performance benefits of our
proposed method.

2 Partitioning Dependent Loops

2.1 Basic terminology

The program model considered in this paper is the loops with
uniform inter-iteration dependences [2-6, 8-14]. That is, the
dependence pattern is the same for each iteration of loops. Such
loops are called uniform dependence loops. Like most other
related work, a loop iteration is considered as the basic sched-
uling unit. A loop nest with

n

 levels forms an

n

-dimensional iter-

ation space, which is a subspace of

Z

n

 bounded by the loop
bounds. This space is composed of points each of which repre-
sents an iteration of the nested loops. Each point in the iteration

space is identified by the index vector (

p

1

,

p

2

,

⋅⋅⋅

,

p

n

)

T

 if its corre-

sponding loop iteration is of loop index (

p

1

,

p

2

,

⋅⋅⋅

,

p

n

).

Definition

1.

Uniform dependence loop nests

: A uniform
dependence loop nest

L

n

(

V

,

 D

) is perfectly nested loops of depth

n

 where

1.

V

 is the set of indexed points each of which represents one
loop iteration and is called a

computation

;

2.

D

 is the dependence matrix in which each column is a depen-
dence vector [32] that describes the inter-iteration depen-
dence of the loops;

3. all the components of the dependence vectors are constants;

4.

∀

v

∈

V

,

v

takes one unit of time to execute; and

5.

∀

v

∈

V

,

v

 depends on {

w

|

w

∈

V

,

v

-

w

is a dependence vector in

D

}

Without loss of generality, we assume that the loop nest has
been normalized. That is, for each loop level

i

, 1

≤

i

≤

n

, the lower
bound of loop index is 0 and the loop index increment is 1.

2.2 Minimum Distance Method

The minimum distance method [3, 8] partitions the iteration
space of a loop nest

L

 into independent sets of computations. Let
these sets are

P

i

, 1

≤

i

≤

k

,

k

∈

N

. The basic idea behind this method

is that

∀

p

∈

P

i

,

p

 must be a linear combination of the dependence
vectors of

L

 from an initial origin-point

p

0

∈

P

i

. That is, with
matrix notation, it can be obtained as

P

i

=

P

i

,0

+

A

×

D

,

where

A

 is an integer matrix and

D

 is the dependence matrix. To
generate the parallel codes that correspond to the partitioned
loops, the dependence matrix

D

 is transformed into an upper

triangular matrix

D

s

 so that the “shifting” distance in each
dimension can be easily derived. However, the transformation

from

D

 to

D

s

 is formulated as a NP problem. D’Hollander [3]
improves it by using a direct and inexpensive partitioning algo-
rithm based on unimodular transformations and overrides the
drawbacks of it when the dependence vectors are not linearly
independent.

Although it is shown that the minimum-distance method can
generate the maximal number of independent sets in the
unbounded iteration space, the independent computations are
not aggregated into regular regions of fixed size and shape. So,
the transformed parallel codes cannot be efficiently executed
due to data distribution and processor load balance problems. As
discussed in the previous section, for an arbitrary set of compu-
tations, it is very difficult to partition the corresponding data into
the same processor. Thus, although, theoretically, minimum
distance method can partition loops into independent sets, in
practice, data communications among processors are necessary.

Many researches have shown that the above problems can be
relieved by partitioning loops into blocks (tiles) [2, 6, 10, 11,
14]. Tiles become natural units for scheduling parallel tasks. The
compiler can easily generate parallel codes for tiles so that
processors are load balanced when executing the codes. More-
over, most the existing parallelizing compilers support block or
cyclic (block size is one) data distribution [7]. So, in addition to
parallelism exploitation, partitioning loops into blocks is also a
very important optimization issue for efficiently executing
programs in distributed memory parallel systems. In this paper,
we will partition loops into rectangular blocks while maximizing
parallelism.

3 The Proposed method

3.1 Some definitions

Intuitively, to exploit the optimal (maximal) parallelism
within a loop nest is to identify

all

 the computations that can be
executed in the first time unit, and then

all

those can be executed
in the second time unit, ..., and so on. So, identifying all the inde-
pendent computations at the first time unit provides a good start
point for exploiting maximal parallelism.

Definition 2. Initially independent computations

,

 initially
independent computation sets

: A computation is

initially inde-
pendent

 iff all its real dependences are satisfied when the loops
just begin their execution. An

initially independent computation
set

(IICS)

is an independent computation set in which every
computation is initially independent.

An initially independent computation set is

maximal

 iff it
aggregates

all

 the initially independent computations.

Definition

3

. Boundary block computation sets

: A

boundary
block computation set

R

=[

r

1

,

r

2

,

⋅⋅⋅

,

r

n

] of a loop nest

L

n

 is a set
of computations where (1

≤

i

≤

n

)

CUG 1995 Fall

 Proceedings

315

(a)

r

i

∈

Z

∪

{

∞

}; (

∞

 denotes the unknown loop upper bound.)

(b) a computation (

p

1

,

p

2

,

⋅⋅⋅

,

p

n

)

T

 is in

R

 iff it is

initially indepen-

dent

 and meets the following conditions:
(1) if

r

i

<0 then

u

i+ri+1≤p
i
≤ui, (ui denotes the upper bound of

the ith loop)
(2) if ri>0 then 0≤p

i
≤ri-1,

(3) if ri=∞ then 0≤p
i
≤ui; and

(c) if ∃ ri=0, then R is an empty set;

Note that a boundary block computation set gathers initially
independent computations around the boundaries of the itera-
tion space and is a block-shaped IICS.

Example 3.1. The iteration space of a loop nest L2 is shown in
Fig. 1. Assume that R1 and R2 are boundary block computation
sets. They are denoted as [∞, 3] and [2, -3], respectively. And,
the computation sets corresponding to the regions S1 and S2 must
not be boundary block computation sets.

Figure 1: Boundary block computation sets.

Definition 4. Maximal boundary block computation sets: Let
expand(ri,1)=ri+1 if ri>0, and expand(ri,1)=ri-1 if ri<0. A
boundary block computation set R=[r1, r2, ⋅⋅⋅, rn] is maximal iff
∀ i, 1≤i≤n, [r1, ⋅⋅⋅, expand(ri, 1), ⋅⋅⋅, rn], which is a proper superset
of R, is not an IICS (i.e., it will include a computation that is not
initially independent). (Note that ∀ i, 1≤i≤n, ri≠0, since R is
empty if ri=0.)

In other words, Definition 4 says that R is the block-shaped
IICS that has been “expanded” as much as possible.

3.2 Formulation of the basic steps
Lemma 3.1. For the loop nest Ln(V, D) which has a depen-

dence vector di=(d1i, d2i, ⋅⋅⋅, dni)
T,

Rdi
=[d1i, ∞, ∞, ⋅⋅⋅]∪ [∞, d2i, ∞, ⋅⋅⋅]∪ ⋅⋅⋅∪ [∞, ∞, ⋅⋅⋅, dni]

is an initially independent computation set with respect to di.
([d1i, ∞, ∞, ⋅⋅⋅], ⋅⋅⋅, [∞, ∞, ⋅⋅⋅, dni] are boundary block computation
sets defined above.)

Lemma 3.2. A computation v of a loop nest Ln is an initially

independent computation with respect to the dependence vector
di iff v is in Rdi

.

•

•
• • • • • • •• • •

•
•

•• • • •
• • •

• •

•
•
•

• •
• •
• •

•
•
•

• • • • • • • • •
•
•
•

• •
• ••

• •
••

•
•

•
• ••

• •
•

•

R1

R2

I

• • • • • • • • •

0 J
0

ui

uj

S1

S2

From Lemmas 3.1 and 3.2, it is clear that Rdi is the maximal

initially independent computation set of Ln with respect to the

dependence vector di.
Theorem 3.1. For a loop nest Ln with m dependence vectors

di, 1≤i≤m,

R0 = Rdi

is the maximal initially independent computation set of Ln.
The following algorithm derives the maximal initially inde-

pendent computation set for a given loop nest.

 Procedure IICS
 Input: Ln with dependence matrix D=[d1, d2, ⋅⋅⋅, dm] (di=(d1i, d2i,

⋅⋅⋅, dni)
T, 1≤i≤m)

 Output: R0

 Begin
Rd1

= [d11, ∞, ∞, ⋅⋅⋅]∪ [∞, d21, ∞, ⋅⋅⋅]∪ ⋅⋅⋅∪ [∞, ∞, ⋅⋅⋅, dn1];

Rd2
= [d12, ∞, ∞, ⋅⋅⋅]∪ [∞, d22, ∞, ⋅⋅⋅]∪ ⋅⋅⋅∪ [∞, ∞, ⋅⋅⋅, dn2];

...
Rdm

= [d1m, ∞, ∞, ⋅⋅⋅]∪ [∞, d2m, ∞, ⋅⋅⋅]∪ ⋅⋅⋅∪ [∞, ∞, ⋅⋅⋅, dnm];

R0 = Rd1
 ∩ Rd2 ∩ ⋅⋅⋅ ∩ Rdm;

Return(R0);

 End.

Theorem 3.2. The output of Procedure IICS, R0, is the union
of all the maximal boundary block computation sets.

Now, we should show that R0 always contains a maximal
boundary block computation set with size greater than one if a
proper wavefront transformation is applied to the original loops.

Lemma 3.3. Any uniform dependence loop nest can be trans-
formed (by skewing) into a canonical form— fully permutable
loop nest. (A fully permutable loop nest is a loop nest whose
dependence vectors have no negative elements.)

Theorem 3.3. Consider a fully permutable loop nest Ln with m

dependence vectors di=(d1i, d2i, ⋅⋅⋅, dni)
T, 1≤i≤m. If a proper wave-

front transformation is applied to the original loop nest Ln, then
Rt=[(d1i+d2i+ ⋅⋅⋅+dni), ∞, ∞, ⋅⋅⋅]⊂ R0, where R0 is the

maximal IICS derived from Procedure IICS.

3.3 An illustrative example
We want to exploit parallelism within loops by partitioning

them into blocks so that all the blocks are identical by translation
and each of them aggregates as many independent computations
as possible. To facilitate the presentation, we define the
following term.

Definition 5. Valid independent computation sets: For a loop
nest L, an independent computation set (ICS) R is valid iff L can
be partitioned into blocks so that each of them is disjunctive,
atomic and identical by translation to R [4]. We call this situation
“ tiling L with R.” Being disjunctive, each computation is
executed exactly only once; and, being atomic, no two blocks are

i

m

=
∩

1

i

m

=1max

316 CUG 1995 Fall Proceedings

cyclically dependent on each other and therefore can be sched-
uled without violating dependences [8]. (R is said to be invalid
if it is not valid.)

For a loop nest, if it can be tiled with an ICS R, clearly, R must
be a subset of the maximal initially independent computation set
R0. From Theorem 3.2, we see that R0 is the union of all the
maximal boundary block computation sets. So, among them, we
can choose the maximal boundary block computation set that is
valid and has the largest size to tile the original loops for maxi-
mizing parallelism.

We describe how to tile the loops with a valid ICS by going
through the following example.

Example 3.2. Consider the nested loops L3(V, D) with V={(i,

j, k)T|0≤i, j, k≤∞} and D = . With Procedure IICS, R0

=([1, ∞, ∞]∪ [∞, −2, ∞]∪ [∞, ∞, 4])∩([2, ∞, ∞]∪ [∞, 4, ∞]∪ [∞,
∞, −1])∩([∞, 4, ∞]∪ [∞, ∞, 2]) = [1, 4, ∞]∪ [∞, 4, 4]∪ [2, ∞, 2].
We intend to tile the loops with a valid independent computation
set Rt. Since [1, 4, ∞], [∞, 4, 4] and [2, ∞, 2] are all the maximal
boundary block computation sets, Rt can be [1, 4, ∞], [∞, 4, 4] or
[2, ∞, 2]. Each case is discussed as follows:

1. Rt = [1, 4, ∞]: Let the loop nest be tiled with [1, 4, ∞]. As
shown in Fig. 2(a), this is to strip-mine dimensions 1 and 2
with strip lengths 1 and 4, respectively. (Dimension 3 is not
strip-mined.) After tiling the loops, since all blocks are iden-
tical by translation, each of them can be represented by an ar-
bitrary point within it (the so-called tile origin) [1]. Thus, the
tile origins define a lattice (see Fig. 2(b)). It is easy to see that,

in this lattice, the “new” dependence vectors are =(1, 0,

0)T, =(1, -1, 0)T, e2=(2, 1, 0)T, and e3=(0, 1, 0)T. In the sense

that tiling is a transformation of the original loops, we consid-

er , , e2, and e3 the transformed dependence vectors.

Since all the transformed dependence vectors are lexico-
graphically positive [13], such a tiling is valid.

We should explain the notation e that we are using: When the
original loops are tiled with Rt=[r1, r2, ⋅⋅⋅, rn], ei=(e1i, e2i, ⋅⋅⋅,
eni)

T represents the dependence vector in the lattice of tile or-
igins that corresponds to the original dependence vector

di=(d1i, d2i, ⋅⋅⋅, dni)
T (1≤i≤m, m is the number of dependence

vectors). For convenience, we may call ei the corresponding
block dependence vector of di.

2. (2) Rt = [∞, 4, 4]: Tiling the loops with [∞, 4, 4] is
strip-mining dimensions 2 and 3 both with strip length 4. (Di-
mension 1 is not strip-mined.) After tiling, the block depen-

dence vectors are =(0, -1, 1)T, =(0, 0, 1)T, =(0, 1,

-1)T, =(0, 1, 0)T and e3=(0, 1, 1)T. Since = - , two

1 2 0
2 4 4
4 1 2

−
−













e1
1

e1
2

e1
1 e1

2

e1
1 e1

2 e2
1

e2
2 e1

1 e2
1

blocks are cyclically dependent on each other. This is the
so-called dead-locked condition [3]. So, the loops cannot be
tiled with [∞, 4, 4]. In fact, such a tiling is invalid because not
all e’s are lexicographically positive. (Lexicographically pos-
itive dependence vectors will never cause dead-lock.)

3. (3) Rt = [2, ∞, 2]: As the same reasoning in (1), the loop nest
can be tiled with [2, ∞, 2].

Figure 2: Illustration of Examples 3.2

So, we have Rt = [1, 4, ∞] or Rt = [2, ∞, 2]. (They have the
same number of computations, 4×∞. ∞ denotes the unknown
loop upper bound). With Rt =[1, 4, ∞], the original loops can be
partitioned into the following parallel form. (On the other hand,
one may let Rt =[2, ∞, 2]. Since it has the same degree of paral-
lelism, we omit the discussion of it.)

Do 200 SI=0, U i -1

 Do 200 SJ=0, Uj /4  -1

 DoAll 100 I= SI,SI

 DoAll 100 J= SJ ×4, min(SJ ×4+3,U j)

 DoAll 100 K= 1, U k

Loop Body;

 100 Continue

Barrier();

 200 Continue

In contrast, with the minimum distance method, the “shifting
distance” in each dimension is 1, 4, and 13, respectively [3], [8].
Hence, the degree of parallelism is limited to 52. The original
loops are partitioned into the following parallel form. (Note that
to conform to the original papers, in the following loops, the
lower bound of every loop index is 1.)

DoAll 100 I0=1,1

 DoAll 100 J0=1,4

 DoAll 100 K0=1,13

 Do 100 I=I0, U i ,1

Y1=(I-I0)/1

Jmin=1+(J0-1-2*Y1) mod 4

 Do 100 J= Jmin, U j , 4

•
•
•
•
•
•
•
•

•
J

(a)

••

•
•
•
•
•
•
•
•

••
0

•
•

•
•
•

•

•

•
•
•

•
•
•

•

•

•
•
•
•
•

•

•
•
•
•
•
•

•

•

•
•
•
•
•
•

•

•

•
•
•
•
•
•
•

I

• • • •

• • • •

•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•
(b)

0

I

•
•
•
•
•
•
•
•

•

o
o

o
o

o

o
o

o
o

o
o

o
o

o

o
o

o
o

o
o

o
o

o

o
o

o
o

•
•
•
•
•
•
•
•

•

o
o

o
o

o

o
o

o
o

o
o

o
o

o

o
o

o
o

o
o

o
o

o

o
o

o
o

o
o

o
o

o

o
o

o
o

(: tile origin) •

J

CUG 1995 Fall Proceedings 317

Y2=(J-J0+2*Y1)/4

Kmin=1+(K0-1+4*Y1+2*Y2) mod 13

 Do 100 K=Kmin,U k,13

Loop Body;

 100 Continue

Obviously, in the above codes, there are index calculation
overheads. And, each independent set is not in a region of
regular shape and size. So, in practical implementation, it is very
difficult to optimize the data distribution among processors.

4 Experimental Results

We conduct some experiments on CRAY T3D. The test loops
are modified from the example given in [8] whose dependence
matrix is the same as that of Example 3.2. As discussed in
Example 3.2, the loops are partitioned into blocks whose size is
4×∞ (∞ denotes the loop upper bound). That is, at most, the
loops can be executed in parallel on 4×∞ processors. However,
with minimum distance method, the “shifting distances” [8] in
the first, the second and the third dimensions are 1, 4, and 13,
respectively. That is, there are at most 52 processors that can
execute in parallel. So, the method proposed in this paper has
much more parallelism, but it requires a global synchronization
in each block of loops. Although the minimum distance method
produces complete independent sets of computations (no
synchronization is required), its parallelism is limited.

Table 1 shows the time results of some experiments on the
CRAY T3D. All time are shown in clocks, which is about 6.7
nsec. In Table 1, “Private” means that data is not shared among
processors, and “(:, :block(4), :block(1))” stands for the data
distribution pattern: the data array is not divided in the first
dimension, is divided with block size 4 in the second dimension,
and is cyclically divided in the third dimension.

From the results, we see that the proposed method can run
faster than minimum distance method when the processor
number is small (1, 2, 4, 8 and 16). This is due to the code
simplicity and low barrier overhead. As the number of proces-
sors increases, the barrier overhead increases, and so the
proposed method loses its advantage. However, with minimum
distance method, the degree of parallelism is limited (52 in this
example). That is to say, it cannot take advantage of massively
parallel processors, which have hundreds or thousands of
processors. In contrast, with the proposed method, the degree of
parallelism is 4×N (N is the loop bound), which is usually very
large. So, its execution time should be bounded by the size of the
machine as long as the barrier overhead is low and the problem
size is large enough. As shown in Table 1, the proposed method
runs faster again at 128 processors due the degree of parallelism.

5 Conclusions

For efficiently executing loops on distributed memory multi-
processor system, some existing methods partition loops into
totally independent sets of computations [3, 8, 12]. However, for
an arbitrary independent set of computations that are executed in

a particular processor, it is very difficult to distribute all the
corresponding data to the same processor so that there is no need
to access data located in other processors. So, although all the
computations are partitioned into independent sets, in practice,
there will exist data communications among processors.

In this paper, we focus to exploiting more parallelism, which
is also an important factor for enhancing performance. The
proposed method can increase parallelism within loops by
adding appropriate barrier synchronizations. The original loops
are partitioned into rectangular blocks. Each block aggregates as
many independent computations as possible for maximizing
parallelism. Since each partitioned region is block-shaped, the
parallel code generation is straightforward and easy. With the
proposed method, the degree of parallelism usually is a function
of loop bounds, and therefore can be very large. Thus, it can take
advantage of massively parallel processor systems, which have
hundreds or thousands of processors. And, its execution time
should be only bounded by the size of the machine as long as the
barrier overhead is low and the problem size is large enough.
The experiments conducted on CRAY T3D MPP, which has
very fast barrier synchronization, shows the implementation
feasibility and performance benefits of our proposed approach.

6 Acknowledgments

The authors would like to thank the Arctic Region Supercom-
puting Center for access its CRAY T3D. The project was funded
in part by the University of Alaska and the National Science
Council in Taiwan.

7 References

[1] “Cray T3D System Architecture Overview Manual,” Cray Research , Inc.,
HR-04033, 1993

[2] Y. S. Chen, S. D. Wang, and C. M. Wang, “Compiler Techniques for Maxi-
mizing Fine-grain and Coarse-grain Parallelism in Loops with Uniform De-
pendences,” in Proc. 8th ACM Conf. Supercomputing, Jul. 1994, pp.
204-213.

[3] E. H. D'Hollander, “Partitioning and labeling of loops by unimodular trans-
formations,” IEEE Trans. Parallel Distributed Syst. Vol. 3, No. 4, pp.
465-476, July 1992.

[4] F. Irigoin and R. Triolet, “Supernode partitioning,” in Proc. 15th annual
ACM SIGACT-SIGPLAN Symposium on Principles Programming Languag-
es, Jan. 1988, pp. 319-329.

No. private (:, :block(4), :bloc
of PEs MD I I MD I I

1 2423636201767112203055965222119819
2 121662841950964572313193101879065
4 60808960542777941151538821016231
8 3274001232128395620746365340415

1 6 1871366817438106354467223135887
3 2 93918769850779176638981776592
6 4 46823326024357 89603331472395
1 2 8 46827284338507 8874469 84045 6

Table 1. Some experimental results on T3D

(II: the proposed method, MD: minimum distance method)

318 CUG 1995 Fall Proceedings

[5] C. King and L. M. Ni, “Grouping in nested loops for parallel execution on
multicomputers,” in Proc. Int. Conf. Parallel Processing, Vol. II, 1989, pp.
31-38.

[6] A. Nicolau, “Loop quantization: A generalized loop unwinding technique,”
J. Parallel Distributed Comput., Vol. 5, No. 10, pp. 568-586, 1988.

[7] D. M. Pase, T. MacDonald, A. Meltzer, “MPP Fortran Programming Mod-
el,” Cray Research, Inc., SN-2513, Feb. 1994.

[8] J.-K. Peir and R. Cytron, “Minimum Distance: A method for partitioning re-
currences for multiprocessors,” IEEE Trans. Comput., Vol. 38, No. 8, pp.
1203-1211, Aug. 1989.

[9] C. D. Polychronopoulos, “Compiler optimizations for enhancing parallelism
and their impact on architecture design,” IEEE Trans. Comput. Vol. 27, No.
8, pp. 991-1004, Aug. 1988.

[10]J. Ramanujam and P. Sadayappan, “Tiling multidimension-al iteration space
for multicomputers,” J. Parallel Distributed Comput., Vol. 16, No. 2, pp.
108-120, Oct. 1992.

[11]R. Schreiber and J. Dongarra, “Automatic blocking of nested loops,” Tech-
nical Report CS-90-108, Univ. of Tennessee, Knoxville, TN, 1990.

[12]W. Shang and J. A. B. Fortes, “Independent partitioning of algorithms with
uniform dependencies,” IEEE Trans. Comput., Vol. 41, No. 2, pp. 190-206,
Feb. 1992.

[13]M. E. Wolf and M. S. Lam, “A loop transformation theory and an algorithm
to maximize parallelism,” IEEE Trans. Parallel Distributed Syst., Vol. 2,
No. 4, pp. 452-471, Oct. 1991.

[14]M. Wolfe, “More iteration space tiling,” in Proc. Supercomputing '89, Nov.
1989.

