A New Approach to Increase Parallelism for
Dependent Loops

Yeong-Sheng ChenDepartment of Electrical Engineering,
National Taiwan University, Taipei 106, Taiwahsang-Ming
Jiang Arctic Region Supercomputing Center, University of

Alaska, Fairbanks, AK 9977%nd Sheng-De WangjDepart-
ment of Electrical Engineering, National Taiwan University,
Taipei 106, Taiwan

ABSTRACT: Loops are the primary source of parallelism in parallel processing. Two itera-
tions in a loop are flow dependent if the results computed at one iteration are used by the other.
Otherwise, they are independent. Independent iterations in loops can be scheduled in any orders
or partitioned to any processors without explicit synchronizations. For dependent iterations,
they are partitioned into sets (one or many) such that iterations in different sets are independent
(e.g., the minimum distance method). These sets can be executed in parallel without explicit
synchronizations. The degree of parallelism is the number of sets. This paper presents a new
approach which can significantly increase the parallelism by adding appropriate synchroniza-
tions. The implementation feasibility and performance benefits of this approach are demon-
strated on the CRAY MPP which has very fast synchronization mechanisms.

1 Introduction arbitrary independent set of computations that are executed in a
particular processor, it is very difficult to distribute all the corre-
Loops provide the most fruitful source of parallelism for sponding data to the same processor so that there is no need to
parallel processing systems. So, it is well recognized that one adccess data located in other processors. In other words, although
the most crucial problems for parallel execution of programs orall the computations are partitioned into independent sets, in prac-
multiprocessor systems is to partition loops into independentice, there will exist data communications among processors.
groups so as to exploit parallelism within loops [2-6], [8-14]. . _ _
Since synchronization overhead among processors will deterio- ©OPServing the above facts, in this paper, we pay our atten-
rate the performance, many researches are focused on the devénS to another important factor which can enhance perfor-
opment of techniques for partitioning nested loops so that wheflance— exploiting more parallelism. We add barrier
the loops are executed no synchronization among processors $§nchronizations into loops to increase the degree of paral-
incurred [3], [8], [12]. Minimum distance method is a typical lelism. Barrier synchronizations are very efficient in the distrib-
example. It partitions loops into totally independent sets ofuted memory multiprocessor systems that have hardware
computations. Each set of computations is then assigned to support for them. For example, Cray T3D MPP has such a
processor. All the sets can be executed in parallel withoutmechanism [1]. We propose an method to aggregate as many
explicit synchronization. independent computations as possible into a block for maxi-
However, in practical implementation on distributed mizing parallelism. At fir;tall the.computations. that arg ind.e.—
memory multiprocessor systems, no synchronization amoné)endent when the loops just begin their execution are identified.
processors does not imply no data communication amond hey are called initially independent computations. We show
processors. If the computations that can be executed in parallépat all the initially independent computations can be aggre-
are not aggregated in a regular region of fixed size and shap@ated into rectangular blocks. So, based on them, the original
then it is very difficult to partition the data so that there is noloops can be partitioned into rectangular blocks to maximize
data communication among processors. Mostly, data distribuparallelism. The corresponding computations of a block is
tion can be done only in block or cyclic manner [7]. So, for anassigned to different processors for parallel execution. A barrier

CUG 1995 FallProceedings 313

synchronization is added in the end of each block, and all blocke/hereA is an integer matrix arid is the dependence matrix. To
are executed sequentially. generate the parallel codes that correspond to the partitioned
In the proposed method, since each partitioned region i#0ops, the dependence matiixis transformed into an upper
block-shaped, the parallel code generation is straightforward angliangular matrixD® so that the “shifting” distance in each
easy. And, it is very likely that when the loops are partitioneddimension can be easily derived. However, the transformation
into blocks, there is better pha_nce to dlstrlb_ute data into ProceSom D to DS is formulated as a NP problem. D’Hollander [3]
sors so that data communication among different processors f§,qves it by using a direct and inexpensive partitioning algo-
minimized. (Mostly, data distribution can be done only in block jjnm hased on unimodular transformations and overrides the

or cyclic manner.) Some experiments are conducted on CRAYy 5\ hacks of it when the dependence vectors are not linearly
T3D MPP. As will be discussed in Section Four, it demO”Strateﬁqdependent.

the implementation feasibility and performance benefits of our

proposed method Although it is shown that the minimum-distance method can

generate the maximal number of independent sets in the

2 Partitioning Dependent Loops unbounded iteration space, the independent computations are
_ _ not aggregated into regular regions of fixed size and shape. So,
2.1 Basic terminology the transformed parallel codes cannot be efficiently executed

The program model considered in this paper is the loops withiue to data distribution and processor load balance problems. As
uniform inter-iteration dependences [2-6, 8-14]. That is, thediscussed in the previous section, for an arbitrary set of compu-
dependence pattern is the same for each iteration of loops. Sutdtions, it is very difficult to partition the corresponding data into
loops are called uniform dependence loops. Like most othethe same processor. Thus, although, theoretically, minimum
related work, a loop iteration is considered as the basic schedlistance method can partition loops into independent sets, in
uling unit. A loop nest witim levels forms am-dimensional iter- practice, data communications among processors are necessary.

ation space, which is a subspacezdfbounded by the loop Many researches have shown that the above problems can be
bounds. This space is composed of points each of which repreelieved by partitioning loops into blocks (tiles) [2, 6, 10, 11,
sents an iteration of the nested loops. Each point in the iteratioh4]. Tiles become natural units for scheduling parallel tasks. The
space is identified by the index vectpy, f,, Mmp,)" if its corre- compiler can easily generate parallel codgs for tiles so that
sponding loop iteration is of loop indep(p,, Mp,). processors are Iogq balanced yvhen exec.utlng the codes. More-
2 n over, most the existing parallelizing compilers support block or
Definition 1. Uniform dependence loop nest& uniform cyclic (block size is one) data distribution [7]. So, in addition to
dependence loop nds{(V, D) is perfectly nested loops of depth parallelism exploitation, partitioning loops into blocks is also a

nwhere very important optimization issue for efficiently executing
1. Vis the set of indexed points each of which represents onBrograms in distributed memory parallel systems. In this paper,
loop iteration and is calleda@mputation we will partition loops into rectangular blocks while maximizing

2. D is the dependence matrix in which each column is a deperEara"ehsm'
dence vector [32] that describes the inter-iteration depen3 The Proposed method
dence of the loops;
3. all the components of the dependence vectors are constantg;'1 S_c_)me deflnmons.)))
Intuitively, to exploit the optimal (maximal) parallelism
within a loop nest is to identifgll the computations that can be
5. Ov0OV, vdepends ony| wllV, v-wis a dependence vector in executed in the first time unit, and thedhthose can be executed
D} in the second time unit, ..., and so on. So, identifying all the inde-

Without loss of generality, we assume that the loop nest hage_ndent comp_u_tations z_it the first time unit provides a good start
been normalized. That is, for each loop leyéki<n, the lower ~ POINt for exploiting maximal parallelism.

4. O vV, vtakes one unit of time to execute; and

bound of loop index is 0 and the loop index increment is 1. Definition 2. Initially independent computationmitially
o) independent computation sefs computation isnitially inde-
2.2 Minimum Distance Method pendeniff all its real dependences are satisfied when the loops

The minimum distance method [3, 8] partitions the iterationjust begin their execution. Anitially independent computation
space of a loop nektinto independent sets of computations. Let set (IICS) is an independent computation set in which every
these sets afg, 1<i<k, kUN. The basic idea behind this method computation is initially independent.

is that[] p(IP, p must be a linear combination of the dependence An initially independent computation set risaximal iff it
vectors ofL from an initial origin-pointp,0P,. That is, with aggregateall the initially independent computations.

matrix notation, it can be obtained as Definition 3. Boundary block computation sefs boundary
block computation sé&=[r,, r,, [r,] of a loop nest., is a set
P=P, ,+AxD, of computations where £i<n)

314 CUG 1995 FallProceedings

(a) r,0z0{w}; (e denotes the unknown loop upper bound.) From Lemmas 3.1 and 3.2, it is clear tRatis the maximal
(b) a computationg(, p,, Mp,)" is inRiff it is initially indepen- initially independent computation set Iof with respect to the

dentand meets the following conditions: dependence vectal.
(1) if r,<0 thenu+r+1<p<u, (u, denotes the upper bound of Theorem3.1. For a loop nedt, with m dependence vectors
theith loop) d;, 1<ism,
(2) if r>0 then &p<r;-1, m
(3) if r=c0 then &p<u; and Ro= ,-Qlei
(c) if Ur=0, thenRis an empty set; is the maximal initially independent computation sett,of
Note that a boundary block computation set gatimétially The following algorithm derives the maximal initially inde-

independentomputationsaround the boundariesf the itera- pendent computation set for a given loop nest.
tion space and is a block-shaped IICS. Procedure 1ICS
Example3.1 The iteration space of a loop nkests shown in Input: L, with dependence matr@=[d,, d,, [d,] (d=(dy, dy;,
Fig. 1. Assume thaR, andR, are boundary block computation T o4
) [Md,) , 1<ism)
sets. They are denoted as B] and [2,-3], respectively. And, output:
the computation sets corresponding to the redpaadS, must BegFi)n R

not be boundary block computation sets.
Rdl: [dll! ©, 0, DI_I]D[OO, d211 0, D]I":l [I]]]][oo, 0, D:mdn]]!
Rd2= [dlz- ©, 00, D:l]]l][oo, d22’ 0, DIJ]D DID:’[OO: 0, mﬂdnz],

u Ry
i e o |o [] e o o o e
o ofe o ogs o o Rdm: [dyy, 0, 00, [M0[00, dypy, 00, [[[00, o0, Tdpy];
¢ o o o;;--;?o o o R():RdlanzmthRdm;
1. ° ofci® oo ReturnRy);
“iefeis i e End.
sttt 'Ry Theorem3.2. The output of Procedure IC&, is the union
o R of all the maximal boundary block computation sets.
EOCTTEn Ry J Now, we should show thd®, always contains a maximal

0 j boundary block computation set with size greater than one if a

proper wavefront transformation is applied to the original loops.
Lemma3.3. Any uniform dependence loop nest can be trans-
formed (by skewing) into a canonical form— fully permutable
loop nest. (A fully permutable loop nest is a loop nest whose
dependence vectors have no negative elements.)
TheorenB.3. Consider a fully permutable loop niestvith m

dependence vectots=(dy, d,, d,)", 1<i<m. If a proper wave-
front transformation is applied to the original loop resthen
Rt:[ma M (d,;+dy+ OHd,), o, o, MR, whereR, is the

Figure 1: Boundary block computation sets.

Definition 4. Maximal boundary block computation sdtst
expand(,1)=r;+1 if r>0, and expand(l)=r-1 if r<0. A
boundary block computation set[r,, r,, [r,] is maximaliff
ai, i<i<n, [r,, (Mexpand(, 1), Ir,], which is a proper superset
of R, is not an IICS (i.e., it will include a computation that is not
initially independent). (Note thdll i, 1<i<n, r#0, sinceR is
empty ifr,=0.)

In other words, Definition 4 says th&tis the block-shaped

IICS that has been “expanded” as much as possible. maximal [ICS derived from Procedure IICS.

3.3 An illustrative example
We want to exploit parallelism within loops by partitioning

N them into blocks so that all the blocks are identical by translation

dence vectod:=(dy, dy, MMd,) and each of them aggregates as many independent computations
Rg=[dy;, o0, oo, [][00, d, co, [[N[eo, co, [Md] as possible. To facilitate the presentation, we define the
is an initially independent computation set with resped.to following term.

([dy, 0, oo, [ITJ} T [eo, oo, (MIdl,] are boundary block computation Definition 5. Valid independent computation setsr a loop
sets defined above.) nestL, an independent computation set (I&33 valid iff L can

Lemma3.2. A computationy of a loob nest.. is an initiall be partitioned into blocks so that each of them is disjunctive,
. ’ P _ . P " y atomic and identical by translationRg4]. We call this situation
independent computation with respect to the dependence vectofjing L with R” Being disjunctive, each computation is

d; iff vis inRy. executed exactly only once; and, being atomic, no two blocks are

3.2 Formulation of the basic steps
Lemma3.1. For the loop nedt,(V, D) which has a depen-

CUG 1995 FallProceedings 315

cyclically dependent on each other and therefore can be sched- blocks are cyclically dependent on each other. This is the

uled without violating dependences [8R i6 said to benvalid so-called dead-locked condition [3]. So, the loops cannot be
if it is not valid.) tiled with [0, 4, 4]. In fact, such a tiling is invalid because not
For a loop nest, if it can be tiled with an IR learly,R must all €'s are lexicographically positive. (Lexicographically pos-

be a subset of the maximal initially independent computation set itive dependence vectors will never cause dead-lock.)
Ry From Theorem 3.2, we see t®t|s the union of all the 3 (3)R = [2, », 2]: As the same reasoning in (1), the loop nest
maximal boundary b!ock computation sets. So, among them, W€ can be tiled with3, o, 2].
can choose the maximal boundary block computation set that i< | |
valid and has the largest size to tile the original loops for maxi- 4 . , (e tile origin)
mizing parallelism. o000 0% 19 000ie000:e0
We describe how to tile the loops with a valid ICS by going * 000;0000:e0
through the following example.
Example3.2. Consider the nested lodpgV, D) with V={(i,

i, K)'|Osi, j, ksoo} and D = 01 2 oO With Procedure [ICR,

- ——— ----..' —————— -

0 00,0 00:e 0

m - ——————— [

R il el

Imemee e e eeepe e e o e e e
1 1 1

32 4 40
B4 -120
..0.........................l......J
(a)

=([1, o0, eo][[eo, =2, w]L[eo, e, 4]) N ([2, e, o] J[eo, 4, eo]][0,
o0, =1]) N ([0, 4, 0] [o0, w0, 2]) = [1, 4, co] [oo, 4, 4][][2, 0, 2]. Figure 2: lllustration of Examples 3.2
We intend to tile the loops with a valid independent computation
setR. Since [14, »], [, 4, 4] and P, », 2] are all the maximal So, we haver = [1,4, ©] or R, = [2, », 2]. (They have the
boundary block computation sefg.can be [14, «], [, 4, 4] or same number of computationssod. o denotes the unknown
[2, 0, 2]. Each case is discussed as follows: loop upper bound). WitR;, =[1, 4, «], the original loops can be

1. R = [1, 4, «]: Let the loop nest be tiled with [#, «]. As partitioned into the following parallel form. (On the other hand,
shown in Fig. 2(a), this is to strip-mine dimensions 1 and 20N May leR =[2, «, 2]. Since it has the same degree of paral-
with strip lengths 1 and 4, respectively. (Dimension 3 is notlelism, we omit the discussion of it.)
strip-mined.) After tiling the loops, since all blocks are iden-
tical by translation, each of them can be represented by an ar- Do 200 SI=0, U ;-1
bitrary point within it (the so-called tile origin) [1]. Thus, the Do 200 SJ=0, /4 41
tile origins define a lattice (see Fig. 2(b)). It is easy to see that, DoAIl 100 I= SI,SI

in this lattice, the “new” dependence vectors e};(l, 0, DoAll 100 J= SJ x4, min(SJ x4+3,U ;)
) H J
0)', e%:(l, -1, 0}, e~(2, 1, 0f, ande;=(0, 1, 0). In the sense DoAll 100 K=1, U k
Loop Body;

that tiling is a transformation of the original loops, we consid-

er 91 eﬁ ,6,, ande, the transformed dependence vectors. 100 Continue

Barrier();

Since all the transformed dependence vectors are Iexico-zoo Continue

graphically positive [13], such a tiling is valid. . o _ o
We should explain the notati@that we are using: When the disltr;rfgg’triﬁséé\évrl]tzitrzzgliglnmi:T cils?nn dciénfézgg’ci:;;?g]t'?%
orlgmal loops are tiled witlR={ry, T [I]l]r_n], e'_(e”'_ 2 Dﬂ] Hence, the degree of parallelism is limited to 52. The original
€,) represents the dependence vector in the lattice of tile Ofpops are partitioned into the following parallel form. (Note that
igins that corresponds to the original dependence vectofp conform to the original papers, in the following loops, the
d=(d,, d,;, Md,)" (I1<ism, mis the number of dependence lower bound of every loop index is 1.)

vectors). For convenience, we may @&lihe corresponding

block dependence vectof d. DoAIl 100 10=1,1

2. (2 R = [, 4, 4: Tiling the loops with ¢, 4, 4] is DoAll 100 Jo:_1,4
strip-mining dimensions 2 and 3 both with strip length 4. (Di- DoAll 100 K0=1,13

mension 1 is not strip-mined.) After tiling, the block depen- Do 100 1=10, U il
dence vectors aré =(0, -1,T;Le§ =(0, 0, 1J, é:(o, 1, Y1=(I-10)/1

. _ Jmin=1+(J0-1-2*Y1) mod 4
-1), 5%:(0, 1, 0y ande;=(0, 1, 1J. Slnceé = 6% , two D0 100 3= Jmin, U |, 4

316 CUG 1995 FallProceedings

Y2=(3-J0+2*Y1)/4

Table 1. Some experimental results on T3D

Kmin=1+(K0-1+4*Y1+2*Y2) mod 13

Do 100 K=Kmin,U K13

No. private (:, :block(4), :blo
Loop Body; of PE§ MD Il MD I

100 Continue 1 [24236362P0671133055965[22119819
Obviously, in the above codes, there are index calculation 2 112166284950964p7313193/1D879065
overheads. And, each independent set is not in a region of 4 1608089604277 798151538/8P016231
regular shape and size. So, in practical implementation, it is very 8 1327400122128309%20746 3534041_
difficult to optimize the data distribution among processors. 16 1187136p8/4381085446722313588
32 03918|7698507[797663898.77659]

4 Experimental Results 64 46823|13260243p578960383147239
128| 46827|2843385p78874469 84045

We conduct some experiments on CRAY T3D. The test loops
are modified from the example given in [8] whose dependence (I: the proposed method, MD: minimum distance method)
matrix is the same as that of Example 3.2. As discussed in . o e I
Example 3.2, the loops are partitioned into blocks whose size i8 partlcular_ processor, it is very difficult to distribute _all the
4xoo (co denotes the loop upper bound). That is, at most, thecorrespondlng data to the same processor so that there is no need

loops can be executed in parallel ofvdprocessors. However, to acctis? data Iocatetqt.ln o(tjhgrt plogessorj. Sto, atllthpugh all the
with minimum distance method, the “shifting distances” [8] in computations are partiioned nto independent Sets, in practice,

the first, the second and the third dimensions are 1, 4, and 1§?ere W_'” exist data commumcaﬂop; among proces§ors. .
In this paper, we focus to exploiting more parallelism, which

respectively. That is, there are at most 52 processors that can I ! : ; hanci : h
execute in parallel. So, the method proposed in this paper ha§ &/S0 an important factor for enhancing performance. The

much more parallelism, but it requires a global synchronizatiofP™0Posed method can increase parallelism within loops by

in each block of loops. Although the minimum distance methoc?dding appropriate barrier synchronizations. The original loops
produces complete independent sets of computations (ngre partitioned into rectangular blocks. Each block aggregates as

synchronization is required), its parallelism is limited. many independent computations as possible for maximizing
Table 1 shows the time results of some experiments on thgarallellsm. Since ea(?h p.al"[ItIOl'led region 15 block-shapgd, the
CRAY T3D. All time are shown in clocks, which is about 6.7 parallel code generation is stralghtforwgrd and casy. With t'he
nsec. In Table 1, “Private” means that data is not shared amo oposed method, the degree of paralielism usually is a function
processors, and “(:, :block(4), :block(1))” stands for the data loop bounds, and therefore can be very large. Thus, it can take

distribution pattern: the data array is not divided in the ﬁrstadvantage of massively parallel processor systems, which have

dimension, is divided with block size 4 in the second dimension,hundreds or thousands of processors. And, its execution time

and is cyclically divided in the third dimension should be only bounded by the size of the machine as long as the

From the results, we see that the proposed method can rbarrler overhead is low and the problem size is large enough.

faster than minimum distance method when the processor e experiments conducted on CRAY T3D MPP, which has

number is small (1, 2, 4, 8 and 16). This is due to the Cod(\?/ery fast barrier synchronization, shows the implementation

simplicity and low barrier overhead. As the number of proces- easibility and performance benefits of our proposed approach.
sors increases, the barrier overhead increases, and so tge
proposed method loses its advantage. However, with minimum
distance method, the degree of parallelism is limited (52 in this The authors would like to thank the Arctic Region Supercom-
example). That is to say, it cannot take advantage of massiveRuting Center for access its CRAY T3D. The project was funded
parallel processors, which have hundreds or thousands df part by the University of Alaska and the National Science
processors. In contrast, with the proposed method, the degree gPuncil in Taiwan.

parallelism is 4N (N_ is the loop bound), which is usually very References

large. So, its execution time should be bounded by the size of the

machine as long as the barrier overhead is low and the problefti “Cray T3D System Architecture Overview Manual,” Cray Research , Inc.,
size is large enough. As shown in Table 1, the proposed methog HR-04033, 1993

f . 128 d he d N lleli 2] Y. S. Chen, S. D. Wang, and C. M. Wang, “Compiler Techniques for Maxi-
runs faster again at processors due the degree of parallelis *mizing Fine-grain and Coarse-grain Parallelism in Loops with Uniform De-
5

Acknowledgments

pendences, in Proc. 8th ACM Conf. Supercomputjngul. 1994, pp.

204-213.
o . o . [3] E. H. D'Hollander, “Partitioning and labeling of loops by unimodular trans-

For efficiently executing loops on distributed memory multi- formations,” IEEE Trans. Parallel Distributed Sysvol. 3, No. 4, pp.
processor system, some existing methods partition loops int%] I‘iG?‘_‘”?' J“'lé 1F?9$'_ ot s de bartitioning.” Rroc. 15t |

. . . Irigoin an . lrolet, upernode partitioning, OcC. annua

totally lndep_endent sets of CompUta“onS_[3’ 8, 12]. However, fo;_ ACM SIGACT-SIGPLAN Symposium on Principles Programming Languag-
an arbitrary independent set of computations that are executed in es Jan. 1988, pp. 319-329.

Conclusions

CUG 1995 FallProceedings 317

[5] C. King and L. M. Ni, “Grouping in nested loops for parallel execution on [10]J. Ramanujam and P. Sadayappan, “Tiling multidimension-al iteration space

multicomputers,” inProc. Int. Conf. Parallel Processinyol. I, 1989, pp. for multicomputers,”J. Parallel Distributed ComputVol. 16, No. 2, pp.
31-38. 108-120, Oct. 1992.

[6] A. Nicolau, “Loop quantization: A generalized loop unwinding technique,” [11]R. Schreiber and J. Dongarra, “Automatic blocking of nested loops,” Tech-
J. Parallel Distributed CompuytVol. 5, No. 10, pp. 568-586, 1988. nical Report CS-90-108, Univ. of Tennessee, Knoxville, TN, 1990.

[7] D. M. Pase, T. MacDonald, A. Meltzer, “MPP Fortran Programming Mod- [12]W. Shang and J. A. B. Fortes, “Independent partitioning of algorithms with
el,” Cray Research, Inc., SN-2513, Feb. 1994. uniform dependencies|EEE Trans. ComputVol. 41, No. 2, pp. 190-206,

[8] J.-K. Peir and R. Cytron, “Minimum Distance: A method for partitioning re- Feb. 1992.
currences for multiprocessordEEE Trans. ComputVol. 38, No. 8, pp. [13]M. E. Wolf and M. S. Lam, “A loop transformation theory and an algorithm

1203-1211, Aug. 1989. to maximize parallelism,TEEE Trans. Parallel Distributed Systvol. 2,
[9] C. D. Polychronopoulos, “Compiler optimizations for enhancing parallelism ~ No. 4, pp. 452-471, Oct. 1991.

and their impact on architecture desigiEE Trans. Compud/ol. 27, No. [14]M. Wolfe, “More iteration space tiling,” iRroc. Supercomputing '‘8&lov.

8, pp. 991-1004, Aug. 1988. 1989.

318 CUG 1995 FallProceedings

