
 

CUG 1995 Fall 

 

 Proceedings

 

319

 

Dedicated Computing on a YMP/C916

 

Bruce C. Curtis

 

 and 

 

Bruce E. Kelly

 

, National Energy Research
Supercomputer Center (NERSC), Livermore, CA

 

ABSTRACT: 

 

The Special Parallel Processing (SPP) program at NERSC provides the dedicated
capabilities of a 16 processor, 256 MW Cray C90 to scientific researchers from a broad range
of disciplines. Started in 1993, the SPP program has supplied over 50,000 CPU-hours of
computing for dozens of parallel applications in magnetohydrodynamics, quantum chromody-
namics, computational chemistry, fluid dynamics, global climate modelling, and other areas. All
of the applications sustain an average concurrency of at least 12 on the 16 CPUs, while a number
of them exceed 15 and approach 10 GFlop/s. In this paper we describe the structure of the SPP
system, discuss difficulties that arise from the dedicated environment, and present performance
results for a number of applications.

 

1 Introduction

 

The National Energy Research Supercomputer Center
(NERSC) provides high-performance computing and
networking services to the energy research community. The
primary computing engines at NERSC (see also

 

http://www.nersc.gov

 

) currently are a 256 processor T3D, a 16
processor C90, two Cray-2s (eight and four processors), a four
processor YMP-EL, and a 12 processor Silicon Graphics Power
Challenge. 

 

1.1 Capacity Mode

 

Historically, the machines at NERSC have been used in

 

capacity 

 

mode, i.e., a machine’s resources are shared among a
large and diverse load of jobs. This mode has the advantage that
processor utilization and throughput are high. In order to
achieve the desired levels of CPU utilization and throughput,
memory size limits are placed on all codes. On the 256 MW
C90, the memory limit is 80 MW. Without a memory limit, a
large serial code could take so much memory that too few other
runnable codes would fit in memory, resulting in substantial
CPU idle time. The disadvantage of capacity mode, and the
memory limit in particular, is that no code can utilize the fullest
capabilities of the system. Each code sees a virtual machine
with 80 MW of memory and no more than 8-10 processors as a
rule of thumb. 

 

1.2 Capability Mode

 

In the spring of 1993, NERSC started limited operations with
the C90 in 

 

capability

 

 mode, as an experiment. The idea was to
provide the full capabilities of the system, i.e., dedicated
computing, to selected clients. This program was named
Special Parallel Processing, or SPP. The success of the program

led to expansion of the resources allocated to SPP in each subse-
quent year. 

This paper describes our experiences with the SPP program.
Section 2 presents some of the benefits that our clients have
reported. We then describe the organization of the SPP system
and some problems that appear in Sections 3 and 4. Perfor-
mance results for several SPP codes are provided in Section 5,
and our plans for future work are outlined in Section 6.

 

2 Benefits of Dedicated Computing

 

Computing in capability mode provides a more powerful
virtual machine to the user. Memory sizes of up to 240 MW are
allowed. SPP codes are required to use all 16 processors and are
required to sustain a CPU-time-to-wall-time ratio of at least 12,
to insure a respectable level of processor utilization. The 3x
increase in memory bounds allows users to compute in new
regimes. SPP research areas such as plasma turbulence studies
[Carreras et al.; Parker et al.; Dimits et al.] typically solve
significantly larger problems and employ finer resolution and
more realistic parameters than would have been possible
without dedicated computing. Quantum chromodynamics
codes [Bernard et al.; Kogut] utilize lattices as large as
36x36x36x95, which also would not have been possible without
dedicated computing. Thus, the SPP program contributes to the
scope and physical realism of the science produced by
NERSC’s user community. 

Faster turnaround is another benefit. Long-running jobs,
especially those with large memory requirements, take a very
long time when executed in capacity mode. A 100-hour 80 MW
job typically takes several weeks to complete if it has to
compete with our normal workload. In dedicated mode,
however, the same job, or even one needing 240 MW of



 

320

 

CUG 1995 Fall 

 

 Proceedings

 

memory, can complete overnight. An ab initio molecular
dynamics project [Kendall], for example, completed in early
1995, after two years of SPP access. It would have taken several
more years without dedicated resources.

Finally, the SPP program yields two beneficial side effects.
One is that it helps prepare NERSC’s client base for future
parallel systems. In developing efficient codes for dedicated
computing on the C90, our users address several of the problems
to be faced on massively parallel processors. Besides the educa-
tional leverage, there are tangible results, as several SPP codes
are written with message passing and run efficiently on MPPs.
The other side effect is that C90 utilization during non-SPP
hours is enhanced by the presence of well-tuned parallel codes.
The users who run large simulations during SPP hours run
smaller ones with the same parallel code during normal produc-
tion hours. With a sufficient number of parallel codes in the
workload, a C90 or similar system will rarely suffer high idle
time. Approximately 25% of the cycles on our C90 are
consumed by parallel codes, due in large part to SPP codes.

 

3 Structure of the SPP System

 

3.1 Network Queuing System Queues

 

The SPP system is divided into three phases, each with its
own queue. The first phase is the file stage in process, the next
phase is the computational part, and the final phase is for file
stage out. This is shown in the following diagram.

The user initially submits a job to the stage-in queue,which
makes sure all the needed data for the computation is available
on local disks. The stage-in queue is currently started three hours
before the beginning of an SPP run. During this phase files are
retrieved from a local file storage system (CFS), copied from a
remote machine or server, and migrated files are brought back
on disk. The stage-in queue needs a large disk space limit, but
the memory and CPU requirements are not high on this queue.
The last thing the stage in job should do is submit the computa-
tional job to the multi-cpu queue.

The multi-cpu queue is where the real work gets done. All the
resources available are given to each job as it is started. Each job
may use 240 MW of memory, 144 hours of CPU time, 16 GB of
disk space, and 100 MW of SDS. They must use all 16 proces-
sors. Thus, the total CPU time requested can be up to 518,400
seconds, or six CPU-days. The last thing the computational job
may do is submit a stage-out job.

This last phase is optional. If the job does not have a large
disk requirement, the results might be left on local disks. Other-
wise, this queue is very much like the stage-in queue. Jobs
should use this phase to store their results.

The stage-in and stage-out queues run while regular NQS
production is running. The multi-cpu queue is the only one

stage-in
queue

multi-cpu
queue

stage-out
queue

get files computational
job job

save files
job results

 

where the entire machine is dedicated to the job. The stage-in
queue is the only queue enabled so users can submit jobs to it.
The other two queues are only enabled when necessary. There
are also group restrictions on who can submit a job.

 

3.2 SPP Scripts

 

SPP is controlled by an AT job that resubmits itself at various
time of the day. This script calls on several other scripts to
perform all the functions necessary to switch between produc-
tion NQS and SPP shots. The time at which the SPP script runs
is determined by a configuration file.

First the script reads the configuration file, which contains the
start and stop times of each SPP shot. This determines which
phase of SPP is underway, if any, and when to resubmit the AT
script.

If SPP is not scheduled to be run for the rest of the day, then
the script is resubmitted for the next day. If there is to be a shot
later in the day, the script will resubmit itself when it is time for
the stage in phase to begin. In addition, NQS is checked to see if
it is in production or SPP mode. If it is still running an SPP shot,
then NQS is switched to production mode. Either of these stages
could be the normal ending mode for a SPP run. Because this is
an AT job, the script could run at any time. So it has to handle
any of the possible state transitions.

There are two other possibilities. It could be time to stage in
jobs or to run jobs. During the stage in phase, the jobs that are
going to run are scheduled. Each scheduled stage-in job is
started, one at a time, until the schedule is complete. This guar-
antees the order in which jobs enter the multi-cpu queue.

The following table indicates when each queue is enabled,
disabled, started, and stopped.

The scheduling is done by a separate script. The scheduler
simply returns the request IDs of the jobs that are to be run. This
means the scheduler may be replaced with ease. It could be
written as a shell script, a perl script, or a C program, for
example.

Currently, the script either does manual or automatic sched-
uling. For manual scheduling, the list of request IDs is read from
a file, which has been entered by NERSC personnel. When

 

Table 1. When Queues are Enabled and Started.

 

Queue

 

Production

 

Begin
Stage in

End
Stage in

SPP
Run

stage-in enabled
stopped

enabled
started

enabled
stopped

enabled
stopped

multi-cpu disabled
stopped

enabled
stopped

enabled
stopped

enabled
started

stage-out disabled
started

disabled
started

disabled
started

enabled
stopped



 

CUG 1995 Fall 

 

 Proceedings

 

321

 

scheduling automatically, a user configuration file is examined.
The user configuration file has an entry for each user allowed to
use the SPP queues. Properties of a user’s codes are included in
each entry. The scheduler uses these properties to choose jobs to
run so as to make the best use of the wall time allocated for the
SPP shot.

 

3.3 SPP Features

 

A 7 GB file system has been set aside for SPP users. This is
known as the fast file system because it resides on a set of disks
that are two to four times as fast as our other large disks. The
speed of the disks is more important to dedicated jobs than to
non-dedicated jobs. If an SPP user wishes to use this file system,
a flag is set in the user configuration file. The scheduler
compares the disk space request of the job to the space available
in the fast file system. If there is enough room the job can be
scheduled. Another field in the configuration file is the graceful
shutdown bit. If this bit is set it means the user has inserted code
that can detect the end of the SPP run and shut down on time.
One of these jobs is usually scheduled as the last job to run.

The time limit for the stage-in queue is given an artificial
meaning. It does not reflect stage-in CPU time; it is an estimate
of the wall time for the dedicated portion. This value is used to
determine how many jobs will be scheduled for any SPP run. It
is not desirable to stage in more jobs than will run during the
shot. 

The SPP shots are not entirely dedicated. All NQS jobs are
suspended, but interactive use is allowed. This could potentially
interfere with the SPP jobs. Several mechanisms have been tried
to insulate the SPP jobs from interactive interference. For
example, the fairshare scheduler was enabled at the beginning of
a shot and turned off again at the end. The fairshare scheduler
was not designed to be used this way and resulted in increased
interference. The current scheme is that all background jobs are
suspended, as well as any foreground jobs that have not written
to the terminal in a certain amount of time.

Finally, the nschedv parameters are adjusted at the beginning
of the dedicated run to give the SPP code every advantage.

 

3.4 SPP Runs

 

SPP runs are divided into production and test runs. The test
runs have the same features as the production runs and are used
for short runs and testing. Test runs are done for one or two hours
in the early morning and utilize their own set of queues. The
production runs are on Friday, Saturday, and Sunday nights and
last up to nine hours. This totals 32 hours of SPP time per week. 

 

4 Difficulties Arising from Dedicated Mode

 

Our efforts to provide a useful dedicated environment on the
C90 have revealed a number of problems. In this section we
discuss a few of these.

 

4.1 User Perspective

 

4.1.1 Code Development

 

The fact that resources available during SPP runs (principally
memory) are greater than those normally available is a disadvan-
tage when debugging. A code larger than 80 MW (the limit for
normal production) cannot be run under the debugger. Thus, the
user either debugs via print statements or tries to duplicate the
bug with a smaller version of the code, often in vain. SPP runs
are batch jobs only, executed in the middle of the night. Turn-
around time is overnight, but can be longer depending on the
jobs in the SPP queue. As an environment for code development,
therefore, SPP is markedly aggravating. Knowing this, and
choosing only stable, well-developed codes for SPP is only a
partial solution. Sometimes anomalous behavior only appears
with the larger problems or finer resolutions that are not possible
except through SPP runs.

 

4.1.2 Code Optimization

 

Optimization in dedicated mode requires a change in the
mindset of most users. For non-dedicated computing, the user
typically attempts to minimize the CPU time (NERSC charges
for CPU time only). For dedicated mode, the user should instead
minimize the wall time. Therefore everything should be parallel-
ized, even if poorly. When a user struggles to improve the
parallel performance of an SPP code, it is often the case that a
serial section has been overlooked because of its relative unim-
portance. Discovering such serial regions is nearly always by
inspection, since the available tools for optimizing parallel
performance (e.g., ATEXPERT) do not reveal the serial sections
in the source code.

Tuning the major parallel regions is more exacting in dedi-
cated mode than normal production. The two primary issues are
load balancing and the granularity of the parallelism. Scientific
codes often have an abundance of parallelism expressed at
different levels. Thus, there can be several degrees of freedom in
structuring the parallel processing. The choice of the level of
parallelism to exploit, while important in non-dedicated mode, is
most critical in dedicated mode. A too fine grained parallel
region may perform at an adequate MFlop/s rate in normal
production, but run at half that rate in dedicated mode, due to a
large increase in CPUs waiting for access to the shared registers.
A too coarse grained parallel region may cause idle CPUs in
dedicated mode, since many processors may have a long wait for
the last CPU to finish its work. This form of load imbalance is
not so damaging in non-dedicated mode because the inactive
CPUs would be released to work on other codes. While a parallel
code developed for normal production may perform poorly in
dedicated mode, fortunately the reverse is not true. A well-tuned
SPP code performs well in normal production.

NERSC’s SPP mode adds another wrinkle to the optimization
problem. The environment is not always dedicated, because
interactive computing is not disabled. Over the course of
months, this interactive interference consumes an average of less
than one half of one CPU, but a given SPP job can suffer several



 

322

 

CUG 1995 Fall 

 

 Proceedings

 

“missing” CPUs. It can be ruinous, therefore, for SPP codes to
optimize for 16 processors. If the work is divided into 16 chunks,
and one CPU is missing, the parallel performance doesn’t just
drop to 15, it drops to eight!

Experience on the C90 provides a rule of thumb for opti-
mizing parallel regions for SPP mode. The amount of time one
chunk of work takes should be 3,000 clocks or more. The
number of chunks in the region should be a at least a moderate
multiple of 16. Sixty-four chunks will suffice, but more will
improve the load balance, especially when there is interactive
interference.

I/o must be optimized in order to utilize dedicated resources
efficiently. Processors sit idle in dedicated mode when synchro-
nous i/o is performed, while in non-dedicated mode they would
be applied to other jobs. Many of the SPP researchers depend on
visualization to analyze their simulations, resulting in consider-
able i/o requirements. I/o must be pruned as much as possible,
and the fastest available devices must be employed for the
remaining data. Asynchronous i/o should be utilized as much as
possible.

These and other optimization issues were the subject of a
workshop for SPP users given by NERSC in December 1994.
Copies of the viewgraphs from the workshop are available from
the authors.

 

4.1.3 Job Monitoring

 

It follows from the structure of the SPP system that one user’s
job can be affected by another user’s job. For example, if several
jobs are scheduled in a particular shot, the later jobs depend to a
certain extent on the earlier jobs. If the earlier jobs take more
wall time than expected, there may be no time left for the later
jobs. When that happens, any jobs that did not start during the
shot must be deleted and resubmitted, to avoid having their files
purged or migrated. Another case that has occurred is when a job
gets hung for some reason in the stage-in queue (say, repeated
attempts to read a file that doesn’t exist), the rest of the jobs
scheduled for that shot are also stuck and cannot submit their
jobs for dedicated computing. 

Consequently, users must monitor the progress of their SPP
jobs more closely than their regular NQS jobs.

 

4.2 System Administration

 

Since dedicated computing is not supported by UNICOS, the
implementation is locally developed and maintained. Some of
the system administration issues are discussed below.

 

4.2.1 Suspending Jobs

 

There is a basic system administration problem with NQS.
How big should swap and spool be made so that there is suffi-
cient space at the highest usage? In the case of SPP the only
concern is swap space. Swap space has to be large enough to
accept all running jobs at one time. The processes from normal
production are out on disk when SPP starts. In addition, 240 MW
to hold the swap image of the SPP job should be available.

A dedicated job may not finish in the time slot and is
suspended at the end of the SPP shot. The suspended process and

all its files sit unused until the next shot, and even worse, the files
may migrate off disk. In order to minimize the resource conges-
tion due to suspended SPP codes, NERSC has written simple
library routines to promote 

 

graceful shutdown. 

 

The user calls a
routine to inform the library how much warning time is needed
before the end of the shot and to provide a variable for the library
to update. The user code polls the variable at strategic intervals.
At the requested time, the library sets the variable and the user
code knows to save the state of the computation and exit. 

Another problem is that suspending NQS jobs does not
always work. This can leave several processes running along
with the SPP job. The reasons for this are not all known, but one
instance is that the suspend call can time out waiting for the
process to complete its i/o. The system will not suspend the
process until the i/o completes. Thus, we must periodically
check for processes that did not suspend and try again.

 

4.2.2 Poor Utilization

 

Monitoring each shot is essential. User errors during dedi-
cated time can waste resources at an alarming rate. Interactive
interference could lead to poor utilization by causing the SPP job
to swap to disk, for instance. 

An AT job runs every ten minutes during dedicated time to
try to diagnose and remedy periods of poor utilization. The diffi-
culties in automatically determining the causes of poor utiliza-
tion currently require operator intervention in most cases.

 

5 Performance Results

 

The floating-point performance and parallel performance of
several SPP projects are shown in Table 2. Below, five research
efforts are highlighted, listed by their project titles, principal
investigator, and affiliation.

 

5.1 Lattice Boltzmann Approach to Turbulence in Divertor 
Plasmas (Vahala, William and Mary University) 

 

Neutral fluid turbulence effects in magnetically confined
plasmas are studied using the relatively new Lattice Boltzmann
approach. The TLBE (thermal lattice Boltzmann equation) code
solves a linearized Boltzmann equation on a lattice. 

The most computationally intensive section of this 2D code
(soon to be extended to 3D) is ideal for the C90. The outer loop,
corresponding to the X direction of the mesh, is parallelized via
autotasking, providing a well-balanced 512 chunks of work or
more. The inner loop, the Y direction, also has 512 or more iter-
ations, providing plenty of work per parallel chunk. The inner
loop also contains an unrolled loop of length six, characterized
by multiply operations that chain into add operations.

The advection subroutine takes only about one percent of the
run time, but it consists of 12 serial loops. Fortunately, the loops
are independent. The largest of these were split, so that the
resulting 16 loops could be executed in parallel.

Before optimization, this code ran at 50 Mflop/s on a single
CPU. The low rate was due to the vector length of size. After
optimization, it has run at 623 Mflop/s per CPU, and attains an
average of 15.52 CPUs (CPU-time-to-wall-time ratio), or 9.7



 

CUG 1995 Fall 

 

 Proceedings

 

323

 

Gflop/s overall. That represents two-thirds of the peak perfor-
mance of the C90.

 

5.2 Direct Numerical Simulation of Natural Transition to 
Turbulence in a Waveguide Mixing Layer (Bell, Lawrence 
Livermore National Lab)

 

Spatially developing mixing layers are simulated by selec-
tively refining portions of the computation region. This Adap-
tive Mesh Refinement (AMR) method was developed as part of
the Grand Challenge Project in Computational Combustion and
Fluid Dynamics. 

The parallelization of this code is accomplished by allowing
each processor to compute asynchronously (implemented with
macrotasking) on independent grid patches. These grid patches
comprise a large range of shapes and sizes, thus it would be
inefficient to process them in lock-step.

The i/o requirements, due to the writing of large files to
generate movies, requires special attention. For each 2.5 hours
of wall time, 10 GB of data is written. The only file system at
NERSC with sufficient free space uses a DD-42 disk, which is
relatively slow. The solution is to buffer data in main memory,
then write it to SDS. When an SDS buffer fills, it is flushed
asynchronously via the “back door” channel to disk. Other i/o,
such as standard output, is directed to a different file system, so
that it won’t block while the huge SDS segment transfers to the
DD-42.

While the numerically intensive core, written in Fortran,
runs at 500 Mflop/s per CPU, the overall code, mostly written
in C++, runs at 382 Mflop/s and sustains an average of 13.85
CPUs, including i/o. The code uses 110 MW of main memory
and 100 MW of SDS. A frame from a movie of the simulation
is shown in Figure 1.

 

5.3 Gyrokinetic Simulation of Tokamak Turbulence (Lee, 
Princeton Plasma Physics Lab)

 

The research under way here is to directly simulate magnet-
ically confined plasmas in tokamaks (torus-shaped devices).
This will provide better understanding of the turbulent transport
phenomena observed experimentally. A 3D (5D in phase space)
toroidal gyrokinetic particle simulation code has been devel-
oped. The code, parallelized with autotasking, sustains a
speedup of 14.5 and performs at a rate of 3.7 Gflop/s on a
typical run. Runs generally use a 128x128x64 grid with 4
million particles, requiring 115 MW of memory and two to
three hours of wall time. Much of the run time is concentrated
in two areas: particle pushing, where each particle’s position
and velocity are advanced; and the accumulation of the ion
density at grid points (gather/scatter).

Figure 2 shows a time sequence of the exponential growth of
a coherent linear mode structure in the poloidal cross section. In
this visualization it is apparent that the radial mode structure
elongates during nonlinear saturation and then rips apart.

 

Table 2.

 

 

 

Performance of eight SPP Projects on the 16-processor Cray YMP/C916

 

Principal Investigator 
and Affiliation

Area of Research
Floating Point 

Performance per CPU 
(Mflop/s)

Parallel Performance 
(CPU time/wall time)

Aggregate Floating 
Point Performance 

(Gflop/s)

Vahala 
William and Mary

Plasma Physics 623 15.5 9.7

Kogut
Univ. Ill

Quantum Chromodynamics 584 15.6 9.1

Hack
NCAR

Global Climate Model 440 14.6 6.4

Soni
Brookhaven 

 

Nat Lab

 

Quantum Chromodynamics 385 15.9 6.1

Bell

 

Lawrence Livermore 

 

Fluid Dynamics 382 13.9 5.3

Cohen

 

Lawrence Livermore

 

Plasma Physics 378 13.8 5.2

Leboeuf
Oak Ridge Nat Lab

Plasma Physics 358 14.0 5.0

K. Lee
Lawrence Berkeley

Electromagnetic Imaging 327 15.1 4.9



 

324

 

CUG 1995 Fall 

 

 Proceedings

 

Agreement between experimental measurements and these
large-scale nonlinear simulations is very encouraging.

 

5.4 Hadronic Matrix Elements of Heavy-Light Mesons 

 

(Soni, 
Brookhaven National Lab)

 

This quantum chromodynamics research project is to deter-
mine weak matrix elements of 

 

B

 

-mesons, which are crucial
inputs for deducing irreducible parameters of the Standard
Model of Elementary Particle Interactions. 

Two codes are used, one for configuration generation, and
the other for quark matrix inversion. The configuration genera-
tion code runs at 385 Mflop/s and has attained as much as 15.87
CPUs for a six wall hour run when there was negligible interac-
tive interference. An example from the matrix inversion code
follows. This nest of loops has a similar structure to a dozen
other nests, which together represent about 80% of the run time. 

 

integer c,y,z,t,zp1
complex i, ctmp1, ctmp2
complex v(4,3,0:ns-1,0:ns-1,0:nt-1)
complex mv(4,3,0:ns-1,0:ns-1,0:nt-1)
complex u(3,3,0:ns-1,0:ns-1,0:nt-1)
do 70 z=0,ns-1
zp1 = mod(z+1,ns)
do 70 y=0,ns-1
do 70 c=1,3
do 70 t=0,nt-1
ctmp1 = 
u(c,1,y,z,t)*(v(1,1,y,zp1,t)+i*v(3,1,y,zp1,t
))+u(c,2,y,z,t)*(v(1,2,y,zp1,t)+i*v(3,2,y,zp
1,t))+u(c,3,y,z,t)*(v(1,3,y,zp1,t)+i*v(3,3,y
,zp1,t))
mv(1,c,y,z,t) = mv(1,c,y,z,t) + ctmp1
mv(3,c,y,z,t) = mv(3,c,y,z,t) - i*ctmp1
ctmp2 = 
u(c,1,y,z,t)*(v(2,1,y,zp1,t)+i*v(4,1,y,zp1,t
))+u(c,2,y,z,t)*(v(2,2,y,zp1,t)+i*v(4,2,y,zp
1,t))+u(c,3,y,z,t)*(v(2,3,y,zp1,t)+i*v(4,3,y
,zp1,t))
mv(2,c,y,z,t) = mv(2,c,y,z,t) + ctmp2
mv(4,c,y,z,t) = mv(4,c,y,z,t) + i*ctmp2
70 continue

 

The inner loop, unfortunately, runs over the last dimension
in the arrays. The lattice sizes to be considered have factors of
two in NS (e.g. NS=16, NT=39 for a small one, and NS=36,
NT=95 for a large one), thus the stride is a large power of two
and the vector length is not advantageous. The outer loops,
while all potentially parallel, do not provide a desirable number
of chunks of parallel work. So, while there is abundant paral-
lelism contained in the nest, exploiting it efficiently takes some
work. 

One solution is to reorder the array dimensions so that the t
dimension is first; compound the t and y loops to form a longer
inner loop; and compound the c and z loops to form a longer
outer loop to be parallelized:

 

complex v(0:nt-1,0:ns-1,0:ns-1,4,3)
complex mv(0:nt-1,0:ns-1,0:ns-1,4,3)
complex u(0:nt-1,0:ns-1,0:ns-1,3,3)
do 70 cz = 0,3*ns-1
z = cz/3
c = mod(cz,3) + 1
zp1 = mod(z+1,ns)
do 70 ty = 0,ns*nt-1
ctmp1 = 
u(ty,0,z,c,1)*(v(ty,0,zp1,1,1)+i*v(ty,0,zp1,
3,1))+u(ty,0,z,c,2)*(v(ty,0,zp1,1,2)+i*v(ty,
0,zp1,3,2))+u(ty,0,z,c,3)*(v(ty,0,zp1,1,3)+i
*v(ty,0,zp1,3,3))
mv(ty,0,z,1,c) = mv(ty,0,z,1,c) + ctmp1
mv(ty,0,z,3,c) = mv(ty,0,z,3,c) - i*ctmp1
ctmp2 = 
u(ty,0,z,c,1)*(v(ty,0,zp1,2,1)+i*v(ty,0,zp1,
4,1))+u(ty,0,z,c,2)*(v(ty,0,zp1,2,2)+i*v(ty,
0,zp1,4,2))+u(ty,0,z,c,3)*(v(ty,0,zp1,2,3)+i
*v(ty,0,zp1,4,3))
mv(ty,0,z,2,c) = mv(ty,0,z,2,c) + ctmp2
mv(ty,0,z,4,c) = mv(ty,0,z,4,c) +i*ctmp2
70 continue

 

The original nest runs at 55 Mflop/s (for the NS=16, NT=39
case) and 7.54 CPUs. The transformed nest runs at 388 Mflop/s
and achieves 15.83 CPUs for the same case. The matrix inver-
sion code overall sustains 14.84 CPUs at 335 Mflop/s, or 5
Gflop/s.

 

Figure 1: A frame of a movie of the direct 
numerical simulation of natural transition to 
turbulence in a waveguide mixing layer.



 

CUG 1995 Fall 

 

 Proceedings

 

325

 

5.5 High Resolution Gyro-Landau Fluid Plasma Turbu-
lence Calculations at the Core of Tokamaks (Leboeuf, Oak 
Ridge National Lab)

 

KITE, a nonlinear plasma fluid turbulence code, is used to
study resistive pressure gradient driven turbulence in magnetic
fusion devices. Experimentally observed transitions from a low
mode of plasma confinement to a high mode of confinement has
been accounted for by theory. It is theorized that the confine-
ment is improved by the nonlinear suppression of turbulence by
sheared poloidal flows. KITE has been used to verify the theory
[Lynch et al.] using realistic equilibrium and dissipation
profiles and parameters corresponding to the Advanced
Toroidal Facility torsatron. Figure 3 shows the transition from
a low mode of confinement (left half) to a high mode of confine-
ment (right half) for ion density (top) and potential (bottom).

The high-resolution SPP runs requires 192 MW of memory,
and averages 14 processors running at 358 Mflop/s, for an
aggregate rate of 5 Gflop/s. The runs are configured to take 3.5
wall hours each, with the state of the calculation written to disk
to be resumed in the next run. Since the code detects the end of
the SPP shot and writes a restart file, it always completes during
a shot. Furthermore the stage-out portion of the job submits the
stage-in script for the next run, thus the calculation is
self-submitting. KITE frequently consumes 150 CPU hours per
weekend.

KITE employs Fourier expansion in the poloidal (the short
way around a torus) and toroidal (the long way around) direc-
tions and a finite difference grid in the radial direction. Parallel-
ization of the most time-consuming portions is accomplished by

autotasking the outer loops over the number of modes, up to
4605 modes. The vectorized inner loops range over the number
of radial grid points.

 

6 Future Plans

 

More work is needed to improve the robustness of the SPP
system. We plan to strengthen the mechanism by which running
SPP codes are monitored. If it can be automatically determined
that an SPP code is failing (e.g. idling CPUs, or continuously
generating exceptions) and hold the job, allowing the next job
run, then valuable resources will be conserved. The current SPP
monitor only looks for the simplest failures; operator interven-
tion is required in most cases. 

We also plan to detect instances where a job has been
prevented from running by other jobs. A message would be sent
to the victim so that he will know to resubmit the job.

The job scheduler can also be improved to make more
complete utilization of the wall time allocated for SPP. One
promising improvement would be for the job monitor to invoke
the scheduler when a failing code has been detected. The sched-
uler could look for an appropriate replacement for the held job,
such as one that doesn’t need a stage-in period.

NERSC has one MPP system and is procuring more, but also
is very interested in SMP systems. The SPP program will likely
be carried forward on SMP systems should they become a
reality at NERSC.

 

Figure 2: A time sequence of the 
exponential growth of a coherent linear 
mode structure in the poloidal cross 
section.



 

326

 

CUG 1995 Fall 

 

 Proceedings

 

Acknowledgments

 

The SPP program could not have been successful without the
support of a number of people. We would like to acknowledge
the contributions of Clark Streeter, formerly of NERSC, our
supervisor Morris Jette, Steve Luzmoor of CRI, and Colin
Henry, formerly of CRI. The full support of NERSC manage-
ment, especially Bruce Griffing, as well as that of Tom Kitchens
of DOE has been greatly appreciated. We thank the NERSC
consulting group for their help, and finally, many thanks to all
the SPP users for their hard work and patience.

 

References

 

C. Bernard, J. Labrenz, and A. Soni, “A Lattice Computation of the Decay Con-

 

s

 

tants of

 

 B 

 

and 

 

D

 

 Mesons”, Phys. Rev. D 49, 2536 (1994).
B.A. Carreras, V.E. Lynch, L. Garcia, and P.H. Diamond, “Dynamics of Sec-

ond-order Phase Transitions in Resistive Pressure-gradient-driven Turbu-
lence”, Phys. Plasmas 2, 2744 (1995).

A.M. Dimits, T.J. Williams, J.A. Byers, and B.I. Cohen, “Implications of Gyro-
kinetic Simulations on the Role of ITG Turbulence in Tokamak Transport”,
Proc. 1995 International Sherwood Fusion Theory Conference.

J.A. Greenough, W.Y. Crutchfield, and C.A. Rendleman, “Numerical Simula-
tion of a Wave-Guide Mixing Layer on a Cray C90”, AIAA Paper 95-2174.

J. Kogut “Quenched QCD at Finite Baryon Density”, Phys. Rev. D51, 1282
(1995)

V. E. Lynch, B.A. Carreras, and J.N. Leboeuf, “The Performance of Fluid
Codes on Parallel Computers”, Bull. Am. Phys. Soc. 39, 1725 (1994).

V.E. Lynch, B.A. Carreras, J.N. Leboeuf, and D.E. Newman, “Numerical Cal-
culations of Improved Modes of Confinement in Magnetic Fusion Devices”,
NERSC Buffer 19, 8 (1995).

S.E. Parker, J.C. Cummings, W.W. Lee, R. A. Santoro, “Gyrokinetic Simula-
tion of Tokamak Plasma Turbulence”, NERSC Buffer 19, 5 (1995).

G. Vahala, P. Pavlo, L. Vahala, H. Chen, “Effects of Velocity Shear on a Strong
Temperature Gradient - a Lattice Boltzmann Approach”, Phys. Lett. A 202,
376 (1995).

G. Xie, K.H. Lee, and J. Li, “A New Parallel 3D Numerical Modelling of the
Electromagnetic Fields”, to be presented at the SEG annual meeting Oct.
1995.

 

Figure 3: The transition from a low mode of 
confinement (left) to a high mode of 
confinement (right) for ion density (top) and 
potential (bottom).


