

CUG 1995 Fall

 Proceedings

327

Evaluation of HPF Products on the Cray-T3D

Michael Ess

, Arctic Region Supercomputing Center

ABSTRACT:

High Performance Fortran is the emerging standard beyond Fortran 90 and is
targeted for parallel machines. Although CRI is monitoring this standard closely, there is no HPF
product currently available from CRI. There are two commercial offerings of HPF for the T3D,
one from the Portland Group and the other from Applied Parallel Research. Both of these prod-
ucts work in conjunction with CRI’s existing Fortran compilers. This report surveys and evalu-
ates these two products. Comparisons are made to the existing CRI products of Craft Fortran and
Fortran 90. The evaluation covers functionality, ease of use and performance.

Fortran Background

From the beginnings in 1957[1], Fortran has been a popular
programming language. With a few hours of effort, an engineer
or scientist could become functional and start producing useful
results. After a year of working with Fortran, a user could feel
quite comfortable. In the 1960s and 70s, each vendor imple-
mented their own version of Fortran with minor differences.
But with the release of Fortran 77[2], many of these additions
were added to the standard. Fortran 77 retained the simplicity of
the original language and because the additions in Fortran 77
were relatively small and may had been implemented already,
Fortran 77 compilers were available from each vendor quickly
after the standard was adopted.

With the introduction of Fortran 90[3], this situation
changed. The small, simple Fortran language became a modern,
big language with many more features and capabilities.
Commonly accepted features like dynamic memory allocation
and pointers were obvious features added to Fortran 90. Addi-
tional capabilities like: modules, generalized precision, and
overloaded operators made the language much bigger and more
complex. The underlying model of Fortran 77 had been a simple
von Neumann machine, but Fortran 90 had to assume a more
general model to service the new architectures. The addition of
array syntax to Fortran 90 was a step in this direction. Because
Fortran 90 was so much bigger and more complex than the orig-
inal Fortran 77, many current architectures still do not have
complete Fortran 90 compilers.

High Performance Fortran, HPF,[4] comes after Fortran 90
and is targeted for parallelism distributed among processors.
HPF builds upon the capabilities of Fortran 90, like array
syntax, but goes on to add capabilities to achieve high perfor-
mance on parallel machines. Unlike vectorization, which
exploits the parallelism at the lowest level of a DO loop, paral-
lelization across multiple processors is most efficient when

implemented at the highest code level possible. Because a
compiler has too many choices to make at such a high level, the
features of HPF allow the user to direct the compiler strategy.
This produces a conflict between the simple Fortran of the past
and HPF with its need for additional information from the users.
Built on top of the incomplete implementations of Fortran 90, it
is hard to get comfortable with these languages because of their
changing capabilities.

Even with this uncertain situation, it still seems inevitable
that HPF must be part of the future of parallel computing. There
is so much legacy Fortran and yet so much demand for addi-
tional performance, that a solution other than HPF is hard to
imagine.

T3D Background

The T3D[5] is the typical MIMD machine and therefore a
target for HPF. Currently on the T3D, there are two program-
ming paradigms: message passing and worksharing. Message
passing is implemented with library calls which instrument the
user’s code. The library calls are implemented with a mecha-
nism at the operating system level to send and deliver these
messages. With a message passing solution, users must modify
their code, ensure correctness of these changes and optimize the
size and speed of the messages passed between processors.
These are difficult tasks and they have slowed parallel imple-
mentations and reduced user interest in parallel machines.

Worksharing has been CRI’s proposed solution to retaining
the Fortran model on the T3D and is implemented in the Craft
Fortran compiler,

cf77

. The defining document[GGG] was
released on January 21, 1992, long before the HPF standard was
finalized, but in time for the delivery of the T3D. Craft Fortran
finds parallelism in DO loop nests with array references. The
user chooses these nests by specifying the memory distribution
for the arrays and the distribution of loop indices among the

328

CUG 1995 Fall

 Proceedings

processors. The burden of instrumenting the code with calls to a
message passing library is handled by the compiler, the compiler
ensures correct results and incurs low overhead in calling the
message passing library. The user’s tasks are now to optimize
the distribution of the arrays and determine which loops should
execute in parallel.

The implementation of Craft Fortran faces the same problems
of HPF and HPF follows many of the same strategies as Craft
Fortran. Although the two approaches have much in common,
unfortunately they have different syntaxes and different capabil-
ities.

CRI products

Although Craft Fortran[6] has great potential, most “high
performance” applications on the T3D have been message
passing implementations. While Craft Fortran has been rela-
tively easy to use, the restriction to loops nests, the power of 2
requirement for array dimensions, and the quality of code
produced have hindered acceptance. Because the HPF standard
has a different syntax than Craft Fortran, users are not anxious to
use this nonstandard implementation. Craft Fortran for the T3D
is now in maintenance mode with no future features planned.

Parallel to the Craft Fortran effort, which was based on
Fortran 77, CRI has developed a new Fortran 90 compiler,

f90

.
CRI used this Fortran 90 compiler to support early use of the
T3D in the seismic industry[7]. Its most popular feature is that it
supports a 32 bit floating point data type, accessible with the
REAL*4 declaration.This product will eventually replace the
Fortran 77 and Craft Fortran compiler,

cf77,

 on both the YMP
and T3E product lines.

CRI’s future plans for Fortran and HPF on the T3D and T3E
are explained in the Cray Research Service Bulletin [8]. CRI’s
attitude is that HPF, as currently defined and implemented, has
neither high performance nor portability. For the T3E, CRI plans
to release Craft90 as an extension of its current

f90

 compiler with
most, but not all, of the current Craft Fortran features. A shorten
list of features and changes from Craft Fortran to Craft 90 is:

1. DOSHARED construct from Craft

2. Load time value for N$PES

3. MASTER/ENDMASTER directives

4. BARRIER/NOBARRIER directives

5. PE_RESIDENT directive

6. Shared array intrinsics

7. Compatibility with SHMEM and PVM

8. No power of 2 restrictions on array sizes

9. No :BLOCK(N) distribution (only :BLOCK or :)

Certainly Craft90 will not become the industry standard and
eventually users of Craft Fortran and Craft90 will have to recon-
cile their codes with HPF.

Portland Group Product

The Portland Group, started in 1989, producing a i860
compiler for Intel Supercomputers. In 1993 they introduced a
parallelizing Fortran compiler for intel’s Paragon computer.
Soon afterwards, they produced parallelizing compilers for
Meiko’s CS-2, Fujitsu’s AP1000, and workstation clusters
running Solaris. PGI was a founding member of HPF Forum and
introduced their retargetable HPF compiler[9] in November
1993. Their first T3D HPF product was available for testing in
May, 1995.

PGI’s compiler, called

pghpf

, takes Fortran 77, Fortran 90
and HPF source as input.

pghpf

, produces a program written in
Fortran 77 with calls to PGI’s library of communications and
utility routines which is then compiled and linked by CRI’s
Fortran 77 compiler,

cf77

. A typical use of

pghpf

 is:

pghfp -Mkeepftn -Mautopar -Minfo hello.hpf

This command would produce an executable for the T3D.
Although

pghpf

 is capable of producing the executable, the
-Hkeepftn switch produces the Fortran 77 source for the user’s
inspection. The switch -Hautopar directs

pghpf

 to parallelize the
original source if possible and the switch -Hinfo produces
compiler statistics and describes the code transformations were
used. The libraries provided by PGI are implemented using the
SHMEM technology[11]. The version of

pghpf

 used in this
report was Release 1.3 which was a beta copy for testing
purposes only. The first production release will be Release 2.0
and will be out by next month, the results presented here are for
a beta version.

Applied Parallel Research Product[10]

APR was founded in 1991 and was also a founding member
of the HPF Forum. APR had previously produced Fortran
browsers and parallelizers as part of Pacific-Sierra Research. In
April 1993, they produced their first HPF product for clusters of
workstations using PVM, the Intel Paragon and the IBM SP1.
The first T3D version using SHMEM technology, was available
in August,1993. APR’s HPF compiler,

xhpf

, is actually part of a
much larger product,

FORGEX

, which includes a Fortran
browser and analyzer.

FORGEX

 also has the ability to use
runtime statistics to help

xhpf

 generate optimal code.
This evaluation only considered the automatic parallelization

of Fortran programs and their implementation of HPF, but
APR’s approach may be correct in that optimal parallelization is
not possible without including runtime information.

A typical use of the APR compiler might look like:

xhpf -plist=report -Auto=1 -ompf greeting.f

This command would produce the executable for the T3D. The
Fortran 77 program produced for CRI’s

cf77

 compiler by

xhpf

 is
in a user accessible file _mpf.f. The -Auto=1(the default) has
told

xhpf

 to compile the source program choosing the most

CUG 1995 Fall

 Proceedings

329

important loop as the template for the data layout and then use
that layout for the remaining loops in the unit. The -plist switch
has

xhpf

 write a package of information for further study with the
FORGEX tools. The -ompf switch is needed to produce a
message passing version implemented with SHMEMs. The
version of

xhpf

 used for this report was version 2.0(29).

Example #1 - Simple relaxation

As a simple test program to exercise each HPF compiler, I
tried a lab problem from my introductory T3D class. This
program consists of a simple 2 dimensional 100 by 100 grid
whose values are initialized to zero except for one spike in the
center. Then a simple relaxation operator sweeps over the grid:

p(i,j) = (p(i+1,j)+p(i-1,j)+p(i,j+1)+p(i,j-1)+4*p(i,j))/8

This relaxation is applied between two copies of the 2 dimen-
sional grid until the difference between them is small. So the
flow of the program looks like:

Figure 1: Flow chart for Relaxation Problem

For this program, the execution time was measured for each
three computational areas:

1. Initialization of the 2D grid

DO 20 J = 1, N
DO 10 I = 1, N

P0(I,J) = 0.0
10 CONTINUE
20 CONTINUE

2. The relaxation:

Initialize Grids

Relaxation

Compute Difference

end

begin

small? yesno

DO 40 J = 2, N-1
DO 30 I = 2, N-1

P1(I,J) = (P0(I+1,J)+P0(I-1,J)+
P0(I,J-1)+P(I,J+1)+4.0*P(I,J))/8.0

30 CONTINUE
40 CONTINUE

3. The residual computation:

ERROR = 0.0
DO 80 J = 2, N-1

DO 70 I = 2, N-1
ERROR = ERROR + (P0(I,J)-P1(I,J)) ** 2

70 CONTINUE
80 CONTINUE

For this lab problem, the value of N was 100 and the problem
was run on 8 PEs. The table below is a summary of execution
times for each of the three timed code segments. The program
executing on a single PE took 1.8445 seconds.

The Craft Fortran modifications included:

1. Resize arrays to 128 by 128

2. Declare arrays as CDIR$ SHARED
P0(:,:block), P1(:,:block)

3. Add DO SHARED constructs to each loop nest

4. Rewrite the residual computation to form partial sums on

each PE
For me, it was a surprise that both HPF compilers did all of

these optimizations and more using only the default paralleliza-
tion switches and with no modifications to the original source
code.

Example #2 - NAS EP Benchmark

Another program that is not as easy for the HPF compilers is
the EP benchmark from the NAS Parallel Benchmark(NPB)
Suite[12]. Examples of the Fortran 77, Fortran 90 and HPF
source codes for this and some of the other benchmarks in the
suite have been written by David Serafini of Computer Science
Corporation and Rice University and are available on at:

http://www.nas.gov.NAS/NPB/software/npb-software.html

Table 1. Compiler results on Relaxation Lab Problem

Code segment Craft
Fortran

pghpf
PGI

xhpf
APR

Array Initialization .0023 .0009 .0032

Total Relaxation Time .5372 .3304 .3625

Total Residual Compute Time .0841 .3977 .2664

330

CUG 1995 Fall

 Proceedings

Table 2. shows the initial performance on these sources for
several compilers running on a single PEs. It is an interesting
exercise to examine the three sources and see how both Fortran
90 and HPF Fortran sources are different from Fortran 77
source.

Notes:

1. The CRI Fortran 90 compiler does not currently

2. implement modules.

3. There were two modifications to the source code.

a. The source code incorrectly places an “implicit none”
statement.

b. The source code incorrectly tries to align a static array
with an allocated array.

4. The APR compiler currently does not accept free formatted
source code, but will later this year.

Although all auto parallelizing directives were used, neither
the PGI nor APR HPF compilers generated code that made use
of more than one PE on the Fortran 77, Fortran 90 or HPF
Fortran sources.

Both PGI and APR had kindly provided their HPF sources for
this benchmark and together with the reported results from
CRI[13] we have Table 3. CRI has not released the hand crafted
source for their results, so their reported results have no educa-
tional value for their users (or their competitors), and the times
presented for CRI are not gotten with Craft Fortran but this calls
to Shmem. The times reported for

 pghpf

and

xhpf

 are from runs
on the ARSC’s T3D running the 1.2 PE.

The PGI effort to optimize the EP benchmark was a signifi-
cant rewrite from the original Fortran source. The original

problem contained 2

28

 samples divided into nested loops of 2

16

and 2

12

 iterations each. In the PGI effort, the innermost DO loop

Table 2. Initial compiler results on Serafini’s source codes, class A

compiler Fortran
77
execu-
tion time
(seconds)

Fortran 90 HPF Fortran

cf77
(CRI)

1663.6 Not appropriate Not Appropriate

f90
(CRI)

1363.3 Needed fea-
tures: imple-
mentation
deferred(1)

Not Appropriate

pghpf
(PGI)

1363.3 With source
code
corrections(2)

With source
code correc-
tions(2)

xhpf
(APR)

1368.5 Free format
source code not
yet imple-
mented(3)

Free format
source code not
yet imple-
mented(3)

was further divided into “slices” of samples of size 2

8

, 2

9

 or 2

10

.
Operations on these slices were then handled with array syntax.
Conditional operations within the DO loop nest were handled
with the

WHERE - ELSEWHERE - ENDWHERE

construct. This implementation also used the KIND intrinsic to
specify floating point constants and the SUM intrinsic to do sum
reductions on the “slices”.

The APR source for the EP benchmark contained only a
single HPF directive:

!HPF INDEPENDENT

before the major loop.

Example #3 - NAS FT Benchmark

This benchmark code uses FFTs to solve a three dimensional
partial differential equation. It is typical of spectral methods and
is challenging for distributive memory machines because the
FFTs require many non local memory accesses. The problem
consists of a 256x256x128 parallelepiped of points transformed
into the frequency space with a 3 dimensional FFT. After being
scaled in the frequency space, the points are transformed back
with an inverse FFT. This benchmark is exceptional for the NPB
because it allows the use of library routines to perform the FFTs.
A summary of results is shown in Table 4..

Table 3. Execution speeds on the NAS EP benchmark, Class A

Num-
ber of
PEs

CRI reported
results

pghpf
PGI

xhpf
APR

8 Not reported 170.7 171.2

16 22.74 85.7 85.6

32 11.37 43.7 42.8

64 5.68 23.2 21.4

128 2.87 13.8 10.8

Table 4. Execution speeds on the NAS FT benchmark, Class A

Num-
ber of
PEs

CRI reported
results

pghpf
PGI

xhpf
APR

16 11.80 out of memory out of memory

32 5.90 out of memory 42.88

64 2.99 6.30 22.33

128 1.52 3.85 12.33

CUG 1995 Fall

 Proceedings

331

The PGI effort to optimize the FT benchmark makes exten-
sive use of the HPF data layout capabilities. Below are all of the
declarations for REAL and COMPLEX arrays at the main
program level:

COMPLEX(KIND=C16), DIMENSION(N1,N2,N3) :: X1, X2, WORK
REAL(KIND=R8), DIMENSION(N1,N2,N3) :: X3
COMPLEX(KIND=C16), DIMENSION(N1+N2+N3) :: TABLE

!HPF$ TEMPLATE T1(N3)
!HPF$ DISTRIBUTE T1(BLOCK)
!HPF$ ALIGN (*,*,:) WITH T1(:) :: X1, X2, X3, K3
HPF$ TEMPLATE T2(N2)
!HPF$ DISTRIBUTE T2(BLOCK)
!HPF$ ALIGN (*,:,*) WITH T2(:) :: WORK
!HPF$ DISTRIBUTE T(CYCLIC)

In the original code the 3D FFT was implemented with 3 calls
to a series of 2 dimensional FFTs and 3 transposes. This code
had been replaced with a call to a PGI library routine. The data
layout choices were made to accommodate this library routine.
PGI also makes use of the RANDOM_NUMBER intrinsic of
Fortran 90 and it replaces the subroutines provided in the orig-
inal F77 source.

APR makes extensive use of the APR extensions to the HPF
data layout features. These features allow each of the three
passes of the 3 dimensional FFT to be done with a nest of similar
DO loops but with a different set of directives prefixing each DO
loop nest. In more detail, we have the three passes of 1 dimen-
sional FFTs as:

CAPR$ PARTITION X1IMAG(*,*,SHRUNKBLOCK)
CAPR$ PARTITION X1REAL (*,*,SHRUNKBLOCK)
CAPR$ DO PAR ON X1REAL<:,:1~1>
CAPR$ IGNORE ALL INHIBITORS
CAPR$ IGNORE ALL COM
C first nest of 1D FFTs
.
.
.
CAPR$ DO PAR ON X1REAL<:,:,1~1>
CAPF$ IGNORE ALL INHIBITORS
CAPR$ IGNORE ALL COM
C second nest of 1D FFTs.
.
.
.
CAPR$ PARTITION X1IMAG (*,SHRUNKBLOCK,*)
CAPR$ PARTITION X1REAL (*,SHRUNKBLOCK,*)
CAPR$ DO PAR ON X1 REAL<:,1~1,:>
CAPR$ IGNORE ALL INHIBITORS
CAPR$ IGNORE ALL COM
C third nest of 1D FFTs
.
.
.
This use of directives to implement a redistribution of the

points within a subroutine is an extension beyond HPF. Simi-

larly the added IGNORE directives provide for situations when
the single:

!HPF INDEPENDENT

directive of HPF did not convey enough information to the
compiler. The APR effort retained the random number generator
of the original Fortran source and implements the 1 dimensional
FFT with straight forward Fortran 77 code.

Conclusions

Users are interested in HPF because it holds out the possi-
bility of high performance when using a standard portable
product. Designers of Fortran 77 had ten years of experience
before deciding what features would become part of that stan-
dard. F90 and HPF designers have not had enough time to imple-
ment what has become accepted and effective. They have moved
more aggressively to define what should be in the standard
before it was acceptable to users and vendors or proven to ensure
high performance. This has resulted in incomplete and immature
implementations of both Fortran 90 and HPF. In this situation
users will wait until the claims of both portability and high
performance are convincing.

References

1. J. Backus et. al. (1957)

The Fortran automatic coding system,

 Western Joint
Computer Conference.

2. American National Standards Institute, Inc., New York, NY.

American Na-
tional Standard Programming Language FORTRAN

, ANSI X3.9-1978

3. International Organization for Standardization and International Electrotech-
nical Commission.

Fortran 90

, ISO/IEC 1539: 1991(E)], also as ANSI
X3.198,1992

4. High Performance Fortran Forum. High Performance Fortran Journal of De-
velopment.

 High Performance

Fortran language specification, version 1.0.

TR93300, CPRC, Rice University, Houston, TX 1992.

5. Subhash Saini and Horst D. Simon, High Performance Programming Using
Explicit Shared Memory Model on the Cray T3D, Proceedings of the Cray
User’s Group Meeting, Spring 1994

6. D. Pase, T. MacDonald, and A. Meltzer.

MPP Fortran Programming Model

,
SN-2513, Cray Research, Eagan, MN

7.

Signal-Processing(32-bit precision) Support for the CRAY T3D Systems

,
SN-2191 1.2 Cray Research, Eagan MN

8.

Fortran parallel programming strategies and directions for the CRAY T3D
and CRAY T3E systems

, Cray Research Service Bulletin, Vol 5, #5, May
1995

9. PGHPF User’s Guide, The Portland Group Inc. Wilsonvile, OR

10. John M. Levesque,

Using High Performance Fortran on the Cray T3D

, Pro-
ceedings of the Cray User’s Group meeting, Spring 1994

11. SHMEM Technical Note for Fortran, SN-2516 2.3, Cray Research, Eagan
MN

12. D. Bailey et. al. The NAS PARALLEL BENCHMARKS, Technical Report
RNR-94-007, March, 1994

13. Subhash Saini and Dave Bailey, NAS Parallel Benchmarks Results 3-95, Re-
port NAS-95-011, April, 1995

