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SUMMARY

This paper presents the  results of porting a code from the 
Cray C90 to the T3D.  The code is part of a global ocean 
modeling application that reaches a tidal solution by
objective analysis  which is an empirical approach based on 
extrapolating satellite altimetry data through the use of 
expansion coefficients determined by an estimation 
algorithm.

The time line for migration of the estimation algorithm 
begins with the C90 vector version (single CPU and 
autotasked).  Next the code is ported to the T3D using a 
message passing strategy (SHMEM calls for 
communication).  Single PE optimizations for memory and 
cache use are continuing and a back-port  of the code is 
planned to the J932 based on the division of work in the T3D 
version.

The major portion of the CPU time in the estimation 
algorithm is in the Basic Linear Algebra Subprograms 
(BLAS) libraries which give good performance on both Cray 
platforms.  A major advantage of the T3D is that the much 
larger problems that are planned and that require more 
memory can be solved by adding more T3D processors.

ABSTRACT

There is a need for more accurate models of ocean tides and 
circulations.  The accuracy of ocean models is improved 
when the models combine a theoretical simulation approach 
with an empirical analysis of satellite altimetry data. 
Increasing model accuracy often requires more memory and 
more processors working simultaneously.  Efficient parallel 
solution algorithms can reduce the wall-clock time t o get a 
tidal solution as well as take advantage of the distributed 
memory available to solve large memory problems on the 
T3D.

INTRODUCTION

Successfully interpreting oceanic measurements provided by 
space borne altimeters improves the accuracy of oceanic tide 
models.  An empirical tidal model for processing 
TOPEX/Poseidon satellite altimeter data solves for tidal 
parameters by an estimation algorithm.  The algorithm is to
difference the data collected at each ground location, then set 
up a system of observation equations, form the weight 

matrix, and then form the normal equations which provide a least 
squares solution for the unknown tidal parameters.  

The model is typically run on a Cray C90.  The BLAS Level 2 and 3 
are used extensively in the formation of the normal equations.  The
current problem solves for  5,120 unknowns and ultimately it is 
desirable to solve for 15,000 unknown tidal parameters 
simultaneously.

The large distributed memory and good performance of the BLAS 
libraries on the T3D motivated the migration of this application in 
anticipation of the upcoming need to solve for a larger number of 
unknown parameters.   Results are presented for both the T3D and 
the C90/J90.

APPLICATION and ALGORITHM 

This application involves altimeter data retrieval from the 
TOPEX/Poseidon satellite which orbits the earth in such a way that 
every ten days it passes over the exact same location on the earth’s 
surface.  The estimation algorithm begins with differencing the data 
collected by the satellite at each location on the ground track.  (see 
Figure 1.)

Figure 1.  Basic Geometry
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The differenced data form the set of observation equations.   
The observation equations are reduced to a symmetric matrix of 
order 43 (the current maximum number of differenced 
observations representing 430 days of TOPEX/Poseidon data).   
This matrix is the inverse of the variance/covariance matrix and 
is also called the weight matrix.

The algorithm is a loop through all the reference locations 
(currently 50,000).  The observation equations are formed, and 
the contribution of each location to the normal equations is 
calculated by a series of four BLAS library routines:  STRMM, 
STRMV, SSYRK, and SGEMV.

The algorithm can be parallelized since the calculations are 
independent for each location.  This approach to parallelization, 
although straightforward, does not reduce the memory 
requirement.  A second approach to parallelization is to divide 
the data and the work in updating the normal matrix in the 
SSYRK BLAS routine.   Subdividing the data in this manner 
also reduces the memory requirement for each individual 
processor.

MIGRATION of ESTIMATION ALGORITHM

C90 Code characteristics

The code processes data for  50,000 locations and solves for a 
maximum of 43 observations per location.  The plan is to move 
toward solving for 80 observations per location.  The current 
code solves for 5,120 unknown parameters, and the plan is to
move toward solving for 11,200 tidal parameters immediately 
and to eventually solve for 15,000 parameters.

The runtime profile of the code is dominated by the  SSYRK 
BLAS routine which takes 98% of the total CPU time on the 
C90.  The code runs for over 14 hours at a rate of 867 Mflops 
on one C90 processor and uses a maximum of 27 Mwords of 
memory.

I/O is not significant.  The normal matrix and right-hand -side 
vector (about 105 Mbytes) are written out to disk at the 
conclusion of the code and a follow-on code actuall y solves the 
equations to retrieve the tidal parameters.

Migration to T3D

Figure 2 shows data layout scheme for distributing the 
right-hand-side vecto r U, the normal matrix DN, and the 
intermediate matrix A.  This figure illustrates an equal division 
of data among four processors labeled PE0 through PE3.

       Figure 2.  Distributed vector U and arrays A and DN

Each processor is assigned one quarter of the data.  The dimension 
of the U vector is 1,280 on each of the four T3D processors, making 
up the total length of all 5,120 elements in U .

The work in calculating the J columns of both matrix A and  DN is 
split similarly among the four processors.  The minimum number of 
processors that could be used for this particular application is four 
because it takes at least four processors to split the large  DN  array 
(which has dimensions 5120 x 5120 on the C90).   The dimension of  
DN on each T3D processor is  5120 x 1280.

Figure 3 shows the process of updating the U vector (the 
right- hand-side).  This i s done with the  SGEMV  BLAS routine.  
The intermediate vector  DL is replicated on each processor.  Each 
processor has only one quarter of the A matrix and the U vector.  

Figure 3.  Updating the U Vector

The load is exactly balanced and there is no communication 
needed since the U vector is an end result, and therefore does not 
move out of the owning processor’s memory until the end of the 
job.

Figure 4 shows the process of updating the A intermediate matrix.  
This is accomplished with a single call to the STRMM  BLAS  
routine.  Each processor has the entire R weight  matrix, and does 
calculations on only one quarter of the A matrix.  The R matrix is 
a square matrix of order 43.  (Figure 4 is not to scale).

              Figure 4.  Updating the A Intermediate Matrix.

 Communication is then needed among processors since an 
up-to-date copy of t he entire A matrix is needed on all processors 
for the next BLAS library routine.  This communication is shown 
in Figure 5.

Updating U Vector 
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Updating  A Matrix 
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Communication is first accomplished using the shmem_put
primitive from the SHMEM library to build a composite A
matrix on PE0.  Next the shmem_broadcast routine is used to
distribute the composite A matrix to all PEs.  Figure 5 shows a 
schematic of the redistribution of the composite A matrix on 
eight PEs.  This communication scheme needs to be optimized 
because it requires a barrier synchronization and it also creates  
a  hot spot where all PEs are trying to communicate with PE0 
at the same time.  The  Apprentice  performance analysis tool 
showed that there was very little gain over having all the PEs  
redundantly calculate the entire A matrix, and then avoiding 
this particular communication altogether.

Figure 5. Communicating the A Matrix

Figure 6 shows the process of updating the DN normal matrix.  
On the C90, this is accomplished with a single call to the  
SSYRK  BLAS routine.  On the T3D this is accomplished by a 
loop over a call to the SGEMV blas routine.   Each processor 
has the entire A matrix and exactly one quarter of the entire 
DN matrix.  An initial strategy of assigning PE0 the first set of 
columns in DN, PE1 the second set, etc.  lead to load 
imbalance and required a call to a barrier routine for 
synchronization.  This was because PE0 had all the short 
length columns, and therefore finished first.  A subsequent 

strategy of assigning stripes of columns balanced the workload 
because each PE then had a mix of short and long columns from the 
normal matrix.   No communication is involved because, like the U 
right-hand-side vec tor, the normal matrix is a final result and is not 
needed until the end of the job.

Figure 6.  Updating the DN Matrix.

In summary, migration from the C90 to the T3D is accomplished by 
copying the weight matrix R and other initialization data to each
processor.  Each processor does redundant work in calculating the 
DL intermediate vector and in equation setup.  The work in the 
STRMM BLAS routine can be split up among the processors, but this 
requires communication.  The SSYRK routine can be split into a 
series of calls to the SGEMV routine,  and this allows the rank K
update to be done in parallel.  Finally shmem_min and shmem_max 
routines are used to identify the minimum and maximum element in 
both the normal matrix and the right-hand-side ve ctor in order to 
verify results with the C90.

RESULTS

Table 1 presents the YMP-C916 non-dedi cated runs on 1-8 c pus for 
5,120 unknowns and with only 100 locations .  One hundred 
locations is a small but representative subset of the 50,000 actual
locations that need to be processed.

             5120 Unknowns and 100 Locations

           #         CPU    wall   Mflops                       total
 cpus       sec.      sec.    /CPU     Speedup    Gflops

          1          102      102       867           1.0          0.87
          2          103        73       852           1.7            1.4
          4          103        43       853           2.5            2.1
          8          103        33       853           3.3            2.8   

Table 1.  YMP-C90 r uns

All the listed computer runs were made during the day on production 
systems and none of the results are  benchmark  runs.  The reported
wall-clock times w ill vary depending on the load and number of jobs 
in the system.  The listed CPU times and megaflop-per-CPU rates 
are fairly independent of system load.  All the runs listed were made 
with autotasking and the major factor in speedup is the autotasked 
BLAS routines in the  SCILIB  scientific library.

Updating Normal Matrix 

AT= * +DN DNA

Stage 1:  Build composite matrix on PE0.

shmem_put( cv0(my_pe()*local_size),
              dv, 
              local_size,
              0)

Stage 2: Distribute composite matrix.

   shmem_broadcast( a, a, size,
                 PE_root,
                 PE_start, 
                 logPE_stride, 
                 PE_size,
                 pSync)

Redistribution of Composite
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The CPU times increase somewhat with additional CPUs and the 
reduction in wall clock time illustrates the tradeoff between 
turnaround time and CPU cycles.  

           #        CPU       wall      Mflops                    total
cpus       sec.       sec.       /CPU    Speedup   Mflops

          1          470        471        188           1.0         188
          2          476        283        185           1.7         314
          4          477        186        185           2.6         481
          8          478        138        184           3.5         642
        12          482        123        183           4.0         732 
        16          486        115        182           4.3         779     

Table 2.  J916  runs.

Table 2 shows the YMP-J916 non-dedicat ed runs on 1-16 cpu s for 
the same size problem using the autotasked BLAS routines.   The 
speedup flattens out at just above four.  Autotasked BLAS routines 
provide a good parallel solution on a small number of CPUs with 
minimal overhead on a loaded system.

Figure 7.  Elapsed T3D seconds.

Figures 7 and 8 show the T3D results.  Figure 7 shows elapsed 
seconds and Figure 8 shows equivalent C90 Mflops.  Both figures 
have the number of T3D processors plotted on the X-axis.

                 Figure 8.  C90-equiva lent Mflops on the T3D

The T3D Mflops reported in Figure 8 are C90-equivalent 
Mflops conservatively calculated by taking the raw flop count 
from the hardware performance monitor on the C90 and
dividing that number by the elapsed time on the T3D.  The T3D 
version of the estimation algorithm makes redundant
calculations and therefore achieves a higher actual Mflop rate.

FUTURE PLANS

Our future plans are as follows:

1.  Larger  problems (more unknowns and more observation per 
     location)
2.  Single PE optimizations for memory and cache use
3.  Back-port the T3D version of the algorithm to the J932
4.  Implement the PBLAS (Parallel Basic Linear Algebra 
      Subprograms) on the T3D and compare performance with 
      the SHMEM implementation
5.  Remove  the power-of-two  restriction on the number of 
      unknown tidal parameters
6.  Parallel I/O

CONCLUSIONS

The profile of the C90 and J90 autotasked implementation 
showed that  98% of the total CPU time is spent in BLAS 
library routines.  Using autotasking, speedups ranged from 2 to 
4 out of 12 CPUs.   Production rates on the J916 were 780 
Mflops and  2.8 Gflops on the C98.

The distributed memory implementation on the Cray T3D 
attained 2.8 Gflops (conservatively based on C90-equivalent 
flop count divided by the elapsed time).  The speedup curve 
up to 128 processors is proportional to the number of 
processors.  The curve does not appear to have flattened  yet, 
but eventually the serial code will begin to dominate as the 
number of processors increases.
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