Message-Passing Generator for HPF on CRAY T3D

Kyeongdeok Moon, Nanjoo Ban, Teageun Kim, Joongkwon
Kim,andYearback YooSupercomputer Center, KIST/SERI,
UhEun-Dong 1, Yoosung-Gu, Taejon, Korea

ABSTRACT : Writing a parallel program using message-passing primitives is time-
consuming and error-prone. Therefore, many researchers perform to develop data parallel
programming model which is easy and portable. In compiling a data parallel program in
distributed memory machine, effective detection of non-local data reference and insertion of
message-passing primitives are important to program performance. Thus, we are developing
the message-passing generator for HPF program on CRAY T3D. It fetches all non-local
data needed by each processor, and puts them into processor’s local memory using PVM

message-passing primitives.

1. Introduction

Solving a large-scale problem in scientific
applications have increased the need for high
performance computing which requires more enhanced
technology in parallel processing than in high speed
computer architecture. In the beginning, writing parallel
program using the message-passing primitives is the only
way to exploit parallelism, but it is time-consuming and
error-prone. Therefore, many researchers have sought to
provide an efficient machine-independent programming
model over the past decade. Initial efforts concentrated
on automatic parallelization. However. after more than
five years of research, most researchers admitted that
fully automatic techniques were not successful in all
cases and believed that data parallel programming model
in which a programmer provide an additional
information of parallelism to a program should be
effective and portable[Phi93][Tse93].

Many researches, such as Fortran D[Tse93]. High
Performance Fortran(HPF)[HPF93}, and Data Parallel C,
are performed to consider extensions to the existing
languages. such as Fortran and C. that allow to specify
parallelism. HPF, de facto standard of data parallel
language. is extension of Fortran 90. The idea behind
HPF is to develop the minimal set of extensions to
Fortran 90 supporting data parallel programming model.
The data parallel programming model is defined as
single thread, global name space and loosely synchronous
parallel computation. The purpose of HPF is to provide
software tools, such as compiler. that produce very
efficient code for distributed memory systems[HPF93].

In distributed memory system. such as CRAY T3D,
data parallel program is written in global address space,

then compiler transforms it into Single Program Multiple
Data(SPMD) parallel program with its own local address
to be run concurrently on processors. Compiler
distributes data on each processor using information of
user directive, and computation using “Owner
Computes Rule”. Therefore, non-local data reference is
required in some cases. This causes compiler to insert
message-passing primitives.

We develop a Parallel Programming TRANslator
(PPTran) which is a tool that transforms data parallel
programs written in HPF to parallel program with
explicit Parallel Virtual Machine(PVM) message-passing
primitives[Moo095]. In compiling data parallel program
for a distributed memory machine, efficient detection of
non-local data reference and insertion of message-
passing primitives are important to program performance.
In this paper, we describe the message-passing generator
for HPF program on CRAY T3D. It fetches all non-local
data needed by each processor, and puts them into
processor’s local memory using PVM message-passing
calls.

2. Overview of PPTran

PPTran is a tool that transforms data parallel
program written in HPF to SPMD parallel program
written in Fortran 77 and PVM message-passing
primitives. Fig. 1 shows the structure and compilation
module of PPTran. PPTran consists of four modules :
Program Analyzer, Partitioner, Message Generator and
Code Generator[Moo95].

CUG 1995 FallProceedings 357

(HPF Program)

e

PPTran System

Partitioner
- Data Partition
- Computation Partition

l

Message Generator
- Index Translation
- Comm. Set Generation

Program Analyzer
- Syntax Analysis
- Dependence Analysis

Code Generator
- Message-Passing Insert
- Unparsing

(SPMD Program |

Figure 1. Structure of PPTran

Program analyzer performs syntax analysis and
dependence detection from HPF program. Through
syntax analysis, PPTran builds the Abstract Syntax
Tree(AST) and symbol table using lex and yacc.
Dependence of program represents the parallelism of
program and consists of two types : data dependence and
control dependence.

In order to exploit the parallelism, and improve the
performance on distributed memory system, PPTran must
distribute the data and computation to increase the data
locality. Data are partitioned onto each processor using
information of ALIGN and DISTRIBUTE directives
which arc analyzed by Program Analyzer. The current
PPTran only supports static distribution. Given the data
distribution, PPTran partitions the computation, such as
array expression, and forall, onto cach proccssor using
“Owner Computes Rule”. Thus. a processor only executes
those iterations for which the left-hand side(lhs) of an
assignment statement is local to p.

HPF supports a programming model based on single
address space. Message Generator performs the index
translation and communication set generation. PPTran
must distribute the data to each processor that has its own
local address. so each processor has local address space
and global addrcss space. Thus, PPTran is neceded to
translate global address to local address and processor
number, and local address to global address. Given the
data and computation partition, the computation
performed on a processor may require data which reside
on other processor. Thus, PPTran is required to
determine the communication sets which are non-local
elements needed by processors.

Finally. PPTran performs the SPMD code generation.
Code Generator inserts the PVM message-passing
primitives to the AST and unparses the AST to produce

358 CUG 1995 FallProceedings

the SPMD parallel program.

3. Message-Passing Generator

In HPF, array statements, do loops and forall
statements are used to express data parallelism. Given the
data and computation partition, a processor executes only
those iteration for which the lhs of an assignment
statement is local to p. If a processor contains right hand
side(rhs) in an assignment whose lhs is not local to
processor p, non-local data reference is occurred. This
forces the compiler to detect non-local data reference and
to insert message-passing primitives effectively[Gup94]
[Sti93}.

We represent the array using slice. (lower bound :
upper bound : stride). On a processor, both indices of
array, owned by it and used for computation by it, can be
expressed using slice[Gup94][Sti93]. Thus, a processor
can detect non-local data reference using intersection of
above two slices. The intersection of two slices, S; =
(Vi:uisy) and S;= (f:u;sp), iseq (1) :

Sin Sy = (max(/;: 1) minCu; tu;): (s * s;)/ &) 1

In eq (1), stride of intersection is the least common
divisor(lcm) of s; and s;, and g is the greatest common
divisor(gcm) of s;and s,.

Let array A(/;:u,:s;) and B(/>:u;:s;) be distributed on
P processors, where P is the total number of processors.
Consider the array statement :

Al uasa) = F(BUy up:sp))

To execute the above statement on each processor
concurrently, following 3 steps are performed{Sti93].

1. Send those elements of B that owned by processor S
but required by processor D

2. Receive non-local elements of B required to update a
local element of A(/,:u,.s,) on processor S but owned
by processor D

3. Execute the computation on each processor

Let array A(/y:uy:s;) and B(/5:uy:s,) be block
distributed onto P processors. When executing the above
array statement, A(/,+i*s,) and B(/,+i*s;) are referred to
correspondingly on each processor. So, A(/,+i*s,) and
B(/;+i*s;) must be located on the same processor’s local
memory before execution. Therefore, the compiler must
compute the SendSet that a processor S must send to a
processor D and the RecvSet that the processor D must
receive from processor S.

To determine the SendSet from sending processor S
to receiving processor D, OWND(A) and OWNS(B) must
be computed :

OWND(/I)=(l|+j:u]:S]),OSan| (2)
OWNS(B) = (5 +i:uz:52).0 < i < na 3)

OWND(A) is the set of array A owned by processor D.
and OWNS(B) is the set of array B owned by processor S.
In eq (2) and (3). n; and n, are consecutive block size
allocated to processor D and S, respectively.

The SendSet from the processor S to D can be
computed by obtaining index set of array A that are
owned by processor D and involved in the computation,
SD, and index set of array B that are owned by processor
S and involved in the computation on processor D, SS.
The index set of array A owned by processor D involved
in computation is in eq (4), and the index set of array B
owned by processor S involved in computation is in eq

(5).

SD = OWND(A) (14 1o 5a) “
SS = OWNS(B) (I up: sp) 3)

Since SD is the index set of array A on processor D,
we need to obtain the corresponding index set of array B
in the same sequence on processor S. If /,+i*s, €SD
and [, +i*s, €SS for any integer i then S sends
B(/,+i*sy) to D which uscs it with A(/,+i * 5a) 1O
execute computation. Following mapping function in eq
(6) gencrates the index set of array A that are owned by
processor D and referenced in the computation.

—_ la
Map(y) =22 g, +1, ©)
Sa

In eq (6). v is index of array B which is involved in
computation. A (/,+i*s,) corresponds to B (/,+i*sp)
=B (Map (I, +i*s,)) . Therefore if Map (I, +i*s,) =
(I, +i* s5) € Map(SD) for any integer i, then processor S
sends B (/, +i*s;) to D. Thus the intersection of these
two sets, SS and Map(SD), is the SendSet.

SendSet = SS ~ Map(SD))]

Sending Algorithm
{
L
SendSet = 0,
Forj=0to ny—1
Fori=0to pm—1
SendSet = SendSet ~ (SS ~ Map(SD))
Endfor
Endfor

Figure 2. Algorithm for sending processor

The algorithm for computing the indices of the array
clements to send is in Fig. 2.

To determine the RecvSet from processor S to
processor D, the indices of array B that processor D
receives from processor S is following :

RecvSet = SD Map ' (SS))

In eq (8), for any integer i, if Map ' (I, +i*s) =
(,+i*s,) e Map™'(SS), then processor D receives
B(l,+i*s;) from processor S. The algorithm for

computing the indices of the array elements to send is in
Fig. 3.

Receiving Algorithm
{
RecvSet =0,
Fori=0to n -1
Forj=0to py-1
RecvSet = RecvSet ~(SD ~ Map™ (SS))

Endfor
Endfor

Figure 3. Algorithm for receiving processor

After processor S and D finish the sending and
receiving algorithm, processor D has element of Array A
and B needed to execute computation. Thus processor D
can execute the computation.

4. Examples

We show the example of four-point relaxation
program. Fig. 4 is the HPF program. The array A and B
are distributed onto 4 processors specified in the
directives. A processor p needs to determine elements of
array B owned by processor q but needed by p.

Real a(99,99), b(99,99)
IHPF$ DISTRIBUTE (:. BLOCK) ::a, b

do j=2, 98
do i=2. 98
a(i, j)=025%(b(i =1L,)D+b(i+1,))
+b(i, j=D)+b(i, j+1)

Figure 4. Four-point relaxation HPF program
In Fig. 5. we show the code for sending and receiving

algorithm. In Fig. 5, il and i2 are index of first
computation used by a processor. and j1 and j2 are index

CUG 1995 FallProceedings 359

p=mypid()
il=ceil(max(p*25,0)/1)
j1=floor(min(24+p*25,97)/1)
do gq=(1+i1*1)/25, (1+j1*1)/25
SendSet = 0
i2=ceil(max(q*25,0)/1)
j2=floor(min(23+q*25,97)/1)
do r=max(il,i2)*1-p*25, min(j1,j2)*1-p*25,1
SendSet = SendSet ~ A(0:99,r)
enddo
send SendSet from processor to processor p
enddo
12=ceil(max(p*25,0)/1)
j2=floor(min(23+p*25,97)/1)
do q=i2*1/25, j2*1/25
RecvSet =0
il=ceil(max(q*25,0)/1)
j1=floor(min(24+q*25,97)/1)
do r=1+max(il,i2)*1-p*25, 1+min(j1,j2)*1-p*25,1
RecvSet = RecvSet n A(0:99,r)
enddo
receive RecvSet from processor q to processor p
enddo

il=ceil(max(2+p*25,0)/1)
j1=floor(min(22+p*25,97)/1)
do q=(1+i1*1)/25, (1+j1*1)/25
SendSet =0
i2=ceil(max(1+q*25,0)/1)
j2=floor(min(23+q*25,97)/1)
do r=2+max(il,i2)*1-p*25, 2+min(jl,j2)*1-p*25,1
SendSet = SendSet n A(0:99,r)
enddo
send SendSet from processor q to processor p
enddo
i2=ceil(max(1+p*25,0)/1)
j2=floor(min(23+p*25,97)/1)
do q=(2+i2*1)/25, (2+j2*1)/25
RecvSet =0
il=ceil(max(2+q*25,0)/1)
jl1=floor(min(22+q*25,97)/1)
do r=1+max(il,i2)*1-p*25, 1+min(j1,j2)*1-p*25,1
RecvSet = RecvSet n A(0:99,r)
enddo
receive RecvSet from processor q to processor p
enddo

Figure 5. Example of send/receive algorithm

of last computation used by a processor p and q
respectively. In Fig. 5, if the processor number, p, is
greater than 0, it sends B(1:98, 0) to processor whose pid
is p-1, and receives B(0:98, 0) from processor whose pid
is p-1. If the processor is less than 3, it sends B(1:98, 24)
to processor whose pid is p+1, and receives B(0:98, 24)

360 CUG 1995 FallProceedings

receives from processor whose pid is p+1.

5. Conclusions

Data parallel language, such as Fortran D and HPF,
makes it much easier for scientist to program for
distributed memory system. A programmer develops a
parallel program in a global address space, and then the
compiler translates the global address space into local
address space for each processor’s local memory and
insert message-passing primitives. Therefore, many users
develop the efficient parallel program with only minimal
user effort.

In this paper, we describe the algorithm to determine
the communication set owned by a processor but used by
other processor. We will implement this algorithm in
PPTran which is a compiler for HPF on CRAY T3D.
PPTran is a source-to-source translator. Therefore,
PPTran translates data parallel program written in HPF
into SPMD program using PVM message-passing
primitives on CRAY T3D.

References

[Gup94] S. K. S. Gupta, S. D. Kaushik, C. H. Hiang, and
P. Sadayappan, On Compiling Array
Expressions for Efficient FExecution on
Distributed-Memory Machine, Technical Report
19, Ohio State University, 1994.

[HPF93] High Performance Fortran Forum, High

Performance Fortran Language Specification
Version 1.0, Tech. Report CRPC-TR92225,
Rice University, 1993.

[Mo095] K. D. Moon, T. G. Kim, N. J. Ban, J. K. Kim
and Y. B. Yoo, A Study on HPF Parallel
Programming Translator Using PVM, Proc. of
Parallel Processing System, Vol. 6, No. 1, May

1995.
[Phi94] Philip J. H., The Impact of High Performance
Fortran, 1EEE Parallel & Distributed

Technology, Vol. 2. No. 3, Fall 1994.

[Sti94] J. M. Stichnoth, D. O’Hallaron, and T. R. Gross,
Generating Communication for Array
Statements Design, Implementation, and
Evaluation, Journal of Parallel and Distributed
Computing, Vol. 21, No. 1, pp. 150-159, 1994.

[Tse93] C. Tseng, An Optimizing Fortran D Compiler for

MIMD Distributed Memory Machine, Ph.D.
Thesis, Dept. of Computer Science, Rice
University, 1993.

