A Progress Report on UNICOS Misuse Detection at Los Alamos

Joseph L. Thompson, Kathleen A. Jackson, Cathy A. Stallings, Dennis D. Simmonds, Christine L.B. Siciliano, and Georgia A. Pedicini, Computing, Information and Communications Division, Los Alamos National Laboratory, Los Alamos, New Mexico

ABSTRACT: An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos¹ enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos' UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos' security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component of NADIR, along with our operational experiences and future plans for the system.

1 Introduction

Los Alamos National Laboratory's Computer Research and Applications Group strives to provide innovative solutions in applied mathematics and computer science. Within this group, the Systems Security Team focuses on system and network security. Its services range from basic research to advanced proof-of-concept application and product development projects, like the Network Anomaly Detection and Intrusion Reporter (NADIR).

NADIR performs misuse and intrusion detection for various systems in the Integrated Computing Network (ICN). The ICN is Los Alamos National Laboratory's main computer network. Serving over 9,000 users, it includes six Cray-class supercomputers (including a T3D), two massively parallel machines (CM200s), a cluster of sixteen IBM RS/6000s, over 10,000 smaller computers and workstations, file storage devices, network services, local and remote terminals, and data communication interfaces. If authorized to do so and using an approved access path, any user inside the Laboratory may access any host² computer from office workstations or terminals. The ICN consists of two completely separate, unconnected networks; a Secure (Classified) Network and an Open (Unclassified)

Network. Outside users can access the Open Network through telephone modems, leased lines, or one of many world-wide networks.

NADIR's charter is to automatically audit, when feasible in near realtime, user activities on both the Open and Secure ICN. It uses expert system techniques to analyze data, and identifies anomalous patterns of activity, logs that activity, produces routine reports, and makes appropriate notifications. NADIR currently audits eight ICN systems, six in the Secure Network and two in the Open Network. Data from these systems is processed by five dedicated workstations. These audited systems are the "targets" of the NADIR service. For each audited target system, NADIR software resides on both the target system and the appropriate workstation. For convenience, throughout this paper the aggregate of all NADIR software and hardware is simply called "NADIR."

Because NADIR is a work in progress, development status differs among currently audited systems. In addition, because the type and functionality of the systems NADIR audits varies considerably, the reader will note implementation idiosyncrasies.

The goal of computer misuse and intrusion detection is to discover security violations on computer systems. Perpetrators may be either insiders (authorized users) or outsiders who clan-

¹ Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. This work was performed under the auspices of the United States Department of Energy

 $^{^2}$ ICN host computers are computers to which normal users have controlling access.

destinely access a system. The first line of defense against all such violations is the institution of formality of operations. This is a way of doing business that emphasizes safeguards and accountability. Formality of operations includes institutional practices such as training, configuration management, and physical security measures.

However, several factors limit the efficacy of these measures. The first is human nature. Users often see security as an unwelcome diversion from the main thrust of their work. They resist learning security measures and procedures and frequently fail to apply them. Second, system managers must effect a compromise between conflicting concerns. For example, while it is more secure to compartmentalize activity, today's users require access to distributed resources. Third, systems frequently contain undetected vulnerabilities to attack and misuse. Finally, there is the threat of insiders who deliberately misuse their legitimate privileges [7].

Given these weaknesses, a second line of defense against abuse is the maintenance and analysis of system audit records. In theory, one can detect break-in attempts and other security violations by detecting abnormal or invalid user activity, changes in the system vulnerability posture, and other misuse indications. However, the traditional approach of manual analysis has generally proved unworkable. Human limitations restrict manual review to a sampling or cursory scanning of the large quantity of audit data and system status information typically generated. This approach can target only a few obvious misuse scenarios; it may miss even these because of human error and because of the speed at which computer misuse occurs.

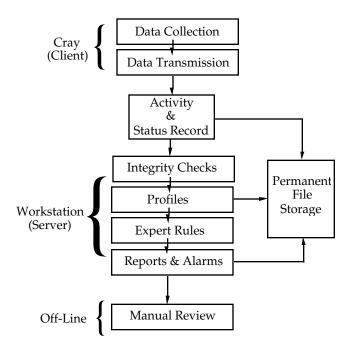
The limitations of manual review have long been apparent to security personnel at Los Alamos. While manual review by security auditors did reveal instances of misuse, there was no way to evaluate the general success or completeness of this effort. Large-scale manual audits of past data also proved cumbersome and time-consuming. It was obvious that automated review would be more effective. Such an analysis combines two essential components. First is the expert's knowledge of security problems. Second is the computer's ability to process and correlate, rapidly and accurately, large quantities of data. In addition, the speed of machine processing can allow an automated system to inform auditors of suspicious activity in time for them to trace and stop it. A system can even be programmed to undertake defensive measures itself, such as logging out a suspected intruder or removing a vulnerable machine from a network.

Los Alamos began developing a misuse detection system in the late 1980s; it has been operational since 1990 [2, 5, 6]. This system, called the Network Anomaly Detection and Intrusion Reporter (NADIR), evaluates the security of our main computing network, the Integrated Computing Network (ICN). NADIR monitors several ICN nodes that handle network services such as authentication, and file access, movement, and long-term storage. It analyzes the audit records kept by these nodes, checking for a set of suspicious activities. It uses an *expert system* methodology in that its misuse scenarios were derived from interviews with security experts, and from hands-on examinations of audit record data.³ With its recent enhancements, NADIR now analyzes audit data from ICN host computers , including our Cray supercomputers.

This paper describes that recent effort to add a new NADIR component that addresses the security of Los Alamos' UNICOS Crays themselves. NADIR has a distributed design: a Cray-based "client" collects data in near realtime and transmits it to a workstation-based "server" for processing. The server analyzes the data, generates reports, and notifies appropriate personnel.

UNICOS NADIR differs significantly from the other components of NADIR in that it monitors host computers rather than network service nodes. It differs significantly from other misuse detection systems with which we are familiar, in that it combines two distinct computer security techniques. It looks both for suspicious *behaviors* and for suspicious *characteristics*. In the first category, it analyzes system audit records for evidence of suspicious behavior. In the second category, NADIR analyzes the status the Crays for characteristics that indicate a vulnerable configuration or other evidence that misuse has taken (or is taking) place.

In developing the Cray implementation we maintained the design philosophy that served us well with the original NADIR [8]. UNICOS NADIR is modular. It both integrates and separates information within different modules so that we can easily analyze data from several Crays simultaneously. It enables us to take individual target Crays in or out of the analysis system (either deliberately or because of failures). It checks all data fed into the database for errors and reduces it to summary profiles. It is designed to undertake data collection and analysis while avoiding any disruption of the normal conduct of business.


NADIR is currently in Phase 2 of its development for the Crays. In phase 1 we focused on writing client and server software that performs all basic required functions on a relatively small set of data. For development purposes, we began by installing client software on a single Cray and server software on a single workstation. Phase 2 development includes providing a graphical interface to the system for investigators, expanding the client and server software to analyze a more comprehensive data set, and installing client software on additional Crays. Section 2 describes the NADIR system to date. Section 3 describes our status, and outlines our plans for the future, in more detail.

2 System Description

UNICOS NADIR is a distributed system. A Cray-based "client" collects and transmits data. A workstation-based "server" confirms the integrity of the received data, formats it into a canonical form, profiles the data, analyzes it for signs of

³ This methodology is in contrast to *anomaly detection* systems, which compile statistics of normal behavior, then note deviations from these norms.

misuse, and produces reports or alarms as required. A graphical interface is provided for reviewing suspicious events. Every day we back up the transmitted data, the profiled data, and all reports to permanent file storage. Figure 2-1 illustrates this process. The following sections detail each of the above activities.

Figure 2-1: NADIR Distributed Implementation

Isolation of the processing and alarm functions in the server has two major advantages. First, it provides a greater level of trust in the detection system. Second, it provides the capability of correlating activity from several Crays, thus increasing NADIR'S sensitivity to misuse distributed over the network. NADIR could operate entirely on each Cray, however the substantial increase in trust and flexibility that derives from separating the functions easily justifies the cost of a workstation and development of data transmission software.

2.1 Client

One NADIR objective is to analyze UNICOS activity promptly, that is, in a near realtime⁴ mode. This permits quicker response to serious events. To meet this objective, each monitored UNICOS Cray executes a client process that collects information and transmits it immediately to a workstation-based server for database insertion and analysis. The client in programmed in the C language. This necessary component of NADIR performs three functions: it

- 1. collects selected UNICOS audit logs,
- probes for signs of misuse and for configuration vulnerabilities, and

3. transmits audit, misuse and vulnerability data to the workstation-based server.

2.1.1 UNICOS Audit Logs

The client currently collects data from the UNICOS security log (SLOG), as defined in UNICOS version 8.0. We plan to expand to additional logs in the future. The client runs periodically⁵, saving its log position for the next collection pass. This approach permits asynchronous retrieval and transmittal of log data from the Cray after system or network interruptions. With each advance, the client parses the audit logs and filters out bad data, preparing it for transmission to the server.

2.1.2 Misuse Characteristics

The client includes an automated security scanner that runs at regularly scheduled intervals⁶. It looks for suspicious *charac-teristics* on the Cray (as opposed to suspicious *behaviors* noted in the system logs). In this way NADIR can identify misuse that may not show up in the standard audit record. These include problems with system configuration, and signs of indirect user modification of the system. This component of NADIR is similar in function to Purdue University's COPS [4] and Lawrence Livermore National Laboratory's SPI [3], though it looks for a wider range of characteristics. It includes enhanced Kuang (expert system) checking [1] for critical activity combinations. The security scanner checks for danger signs such as the following:

- Files modified by a daemon (e.g., sendmail or crontab writing to a file or changing file permissions).
- Minor changes in file permissions with indirect consequences (e.g., a user in a "system" group accidentally makes his or her home directory world writable).
- Violations of site policy (e.g., root modification of /etc/hosts.equiv, adding a '+').
- Significant changes in the /etc/udb file (e.g., security attribute additions, deletions, or modifications).
- · Modification of critical system binaries.
- Flaws in critical file formatting (e.g., the /etc/group and /etc/passwd files).
- Inadequate protection status of system directories, files, and devices (e.g., world writable system directories and files, and world readable memory devices).
- Incorrect anonymous FTP configuration.
- File access permission problems (e.g., world writable files referenced by system crontab entries, world writable files referenced by /etc/rc, the proper configuration of trust files,

⁴ At this time, we define near realtime as the detection and reporting of misuse within, at most, one hour of its occurrence.

⁵ Currently, every six seconds. This collection rate is tunable.

⁶ The periodicity is variable. For example, every minute the scanner sends all changed udb entries to the server, and every hour it sends the udb state (summary statistics about the udb). Then, as a sanity check, it sends the entire udb to the server once a day.

world writable user critical files (e.g. .rhosts, .login, .cshrc), and world readable .netrc files).

- Insecure daemons (i.e., sensitive programs such as TFTP and REXD).
- Invalid root configuration (e.g., system files and root login files owned by a user other than root, root's umask set incorrectly, hosts.equiv and ftpusers configured incorrectly).
- World writable home directories.

2.1.3 Data Protection

The many users on each Cray pose a serious potential threat to the integrity of UNICOS audit and security scanner data, and the client process. This risk has been minimized by the prompt transmittal of the data from the Cray to the workstation. Furthermore, we believe the security features of the UNICOS operating system, if properly implemented, provide significant protection for the data and process. Several protections, in particular privileged role separation, provide excellent assurance against alteration of security audit logs. Other audit logs may be protected using UNICOS Multi-Level Security features, such as Mandatory Access Controls (MAC) or Privilege Access Lists (PALs). The client software is protected by UNICOS security features such as privileged role separation. Finally, the client cooperates with the server in performing several integrity checks on all transmitted data (Section 2.1.4).

2.1.4 Data Transmission

The client transmits all data to the server in binary format. Client and server ensure data integrity cooperatively, using the following means:

- A *sequence number* that ensures the detection of repeated, missing, or out-of-sequence data packets. This helps detect not only data that has been deliberately tampered with, but also transmission mistakes resulting from system or client failures. The server logs all sequence failures. Such failures themselves could trigger an alarm.
- A *shared secret* that is used to verify the authenticity of each received packet. The shared secret sent by the client must match that kept by the server. The shared secret consists of a 32-bit key that can be changed as often as deemed necessary by NADIR. The server discards packets lacking the correct key, and logs all shared key failures.
- A *source identity check* that verifies the source (Cray) identity of incoming data packets, and whether each packet's internal labeling matches that particular Cray machine. The server logs all invalid sources.

Transmitted data is not encrypted because we consider the network segment between the target Cray and the NADIR workstation both physically and logically secure. The only nodes (machines) allowed on this segment are special-purpose network services that are physically and internally secure. Access to them is limited to authorized network personnel. No computers accessible to normal users are allowed on this segment. Consequently, there is no way the shared secret can be monitored by unauthorized users while transiting this network segment. However, if the need arises, encryption can be easily implemented.

2.2 Server

The server resides on a Tatung SuperComp[™] workstation (a SUN[™] clone) with 97 MBytes⁷ of memory and two 1.05 GByte disks. The Sybase[™] relational database management system is used to organize the data structure and to enable easy data access. The server software is written in the C language and Transact-SQL (Sybase's version of SQL). The server performs five functions: it

- 1. decodes the incoming binary data from the client and performs integrity checks on that data,
- 2. formats the data for use by the server,
- 3. summarizes this "raw" data into profiles of both individual user activity and composite system activity,
- 4. examines the profiles for signs of misuse, and
- 5. reports its findings.

2.2.1 Data Receipt

The server decodes each incoming data packet and checks its integrity (Section 2.1.3). It reports any out-of-sequence or apparently bogus (failed the shared secret test) data. It discards duplicated or bogus data packets. It determines the type of data, and activates appropriate routines for parsing and resolution.

2.2.2 Data Formatting

After the server receives a UNICOS audit record, it first parses the record and places it in a canonical format. We do this to provide a standard data interface to the server. This is useful for two reasons. First, we are expanding the server to process multiple UNICOS audit logs (in the short term) and to other UNIX operating systems (in the long term). With this approach, the server parsing function will not have to be modified to handle different data formats. All modifications will be limited to this one function; the core of the server will remain unchanged. Second, we wanted to implement the standard audit data interchange format currently proposed in the computer security community [10]. Widespread use of this format will allow the sharing of audit record information from different misuse detection systems. Such a common format is much desired by developers of audit record analysis tools. It includes 'wild card' fields that can be used for system-specific information, such as our 'Partition' and 'Compartment' fields, and event-specific information. Each canonical audit record describes a single event, and is formatted as summarized in Table 2-1.

⁷ The server currently requires only 32-48 MBytes of memory.

The date and time at which the activity occurred.
The type of event described in this audit record.
The current process identifier.
The event outcome.
A full description of the UIDs
A full description of the GIDs.
The session to which the process be- longs.
The security level of the event subject, whether user or process.
Information about the objects af- fected by the event, if any.
5 DATA
The host Cray on which the attempted activity occurred.
The security partition in which the at- tempted activity occurred (a Los Alamos specific attribute).
The source of the activity. For ex- ample, the workstation from which a user logged on.
The security compartment of the at- tempted activity.
The integrity category of the at- tempted activity.
The data specific to the type of activity being reported.

2.2.3 Profiles

The server maintains profiles for each assigned user identifier (UID) and for a composite of all UIDs on the Cray being monitored. The profiles summarize the raw audit data, making it easier to store, interpret, and analyze. Profiles are saved daily to the ICN's permanent file storage. The profiles described in this Section are Phase 1 profiles, and are geared toward examining logon activity, configuration, and misuse data. As we expand the scope of examined activities in phase 2, we are expanding the profiles accordingly.

2.2.3.1 Profile Design

Profiles are summary statistics of activity over some defined interval. The server maintains two kinds of profiles; individual and composite. Individual profiles summarize the activity attributed to specific UIDs. Composite profiles summarize the activity of an entire system. Individual and composite profiles are structured as in Tables 2-2 and 2-3..

segment		interval
1	current hour	
2	cur	rent day
3	m	day 1
4	o v	day 2
5	i n	day 3
6	g	day 4
7	w	day 5
8	e e	day 6
9	k	day 7

Table 2-3. Composite Profiles

segment		interval
1	current hour	
2	cur	rent day
3-26	m	day 1 (24 hours)
27-50	0 v	day 2 (24 hours)
51-74	i n	day 3 (24 hours)
75-98	g	day 4 (24 hours)
99-122	w	day 5 (24 hours)
123-146	e e	day 6 (24 hours)
147-170	k	day 7 (24 hours)

Each profile consists of a number of *segments*. Each segment corresponds to a certain time interval. The composite profiles are more detailed than the individual profiles: each full day's data is broken into 24 segments, one per hour. Each segment has numerous *fields* that summarize some aspect of the subject of the profile (individual user or system) during that time interval. These fields are described in Section 2.2.3.2 and 2.2.3.3. Many of these are count statistics such as the number of logon failures during the interval. These statistics are updated each time a relevant audit record is received.

The first two segments of both profiles describe the *current hour* and *current day* thus far. The remaining segments describe a *moving week* of data, of which the seventh day is the most recent day for which complete data are available. For example, if today is Thursday (the current day), the moving week includes data from the previous Thursday through yesterday (Wednesday). As each current hour is completed the current day segment is updated and the current hour segment is re-initialized. As each current day is completed the current moving week is updated and the current day segment is re-initialized. For example, at the end of Thursday, the moving week shifts to last Friday through Thursday.

2.2.3.2 Individual Profiles

Individual profiles provide a summary of activity for each authorized UID on the system. They consist of one record for each unique UID. We group the individual profile fields into three sections:

User Definition fields (Table 2-4) provide basic information about each UID. The information for this definition will be obtained from the UNICOS password file (/etc/ passwd) and user database (/etc/udb).

Table 2-4. Inc	lividual UID	Profile:	Definition
----------------	--------------	----------	------------

User ID	The baseline user identifier.
Group ID	The baseline group identifier (GID).
User Name	The full given name of the user or
	process associated with the UID.
User Moniker	Nickname associated with the user.
User Number	The user's unique Los Alamos
	identification number.
User Type	The types of ICN users, some with
, , , , , , , , , , , , , , , , , , ,	special privileges.
Comment	Optional description of the user ID.
Initial Directory	The path to the UID's logon di- rectory.
Shell	The location of the UID's default
	shell.
Security	The user's assigned active (or de-
Compartments	fault) and authorized compartments.
Security Levels	The user's assigned maximum and
, ,	minimum security level.
Integrity	The user's assigned authorized cate-
Categories	gories.
Integrity Classes	The user's assigned maximum and
	minimum integrity class.

User History fields quantify different types of selected behavior associated with the UID, and are linked to tables listing these types. For example, one history field holds the number of source workstations used by the UID, and is linked to a table listing the actual workstations. Table 2-5 illustrates the type of data maintained in the UID history.

Partitions	The number and a list of the different security partitions from which the UID has attempted to log on to the Cray, both successfully and unsuccessfully.
Workstations	The number and a list of the different workstations from which the UID has attempted to log on to the Cray, both successfully and unsuccessfully.
Logon User IDs	The number and a list of the different UIDs associated with the primary UID, both successfully and unsuccessfully.
Logon Group IDs	The number and a list of the different GIDs associated with the primary UID, both successfully and unsuccessfully.

User Activity fields hold the count statistics for different types of UID activity. These are derived both from the audit record, and from the active security scanner. The misuse recorded here is that which can be attributed to a specific UID. Table 2-6 illustrates the types of data maintained in the UID profile.

Table 2-6. Individual UID Profile: Activity

Logon Component:		
Successful logons	Counter that tallies all successful lo-	
	gons.	
Unsuccessful lo-	Counter that tallies all attempted un-	
gons	successful logons.	
Successful logon	Counters that tally all attempted lo-	
levels	gons at four security levels.	
Unsuccessful lo-	Counters that tally all attempted lo-	
gon levels	gons at four security levels.	
Logon errors	Counters that tally various types of	
	logon failures.	
Misuse Indication Component:		
UDB Changes	Counters that tally additions, dele-	
	tions, and modifications to the	
	UID's record in /ect/udb.	

2.2.3.3 Composite Profiles

The composite profile provides a summary of UID activity, misuse indications not attributable to a single or specific UID, and vulnerability posture for the whole Cray. The profile consists of one record for each monitored Cray. Tables 2-7 through 2-9 illustrate the composite profile.

2.2.4 Profile Analysis

The NADIR server compares the profiles to expert rules that encode our security policy and unusual or suspicious activity. One set of rules applies to individual UID activity, another to composite activity.

Logon Component:	
Successful logons	Counter that tallies all successful lo-
	gons.
Unsuccessful lo-	Counter that tallies all unsuccessful
gons	logons.
Successful logon	Counters that tally all successful lo-
levels	gons at four security levels.
Unsuccessful lo-	Counters that tally all unsuccessful
gon levels	logons at four security levels.
Logon errors	Counters that tally various types of
	logon failures.

2.2.4.1 Evaluation Schedule

Profiles are evaluated using the expert rules described in Section 2.2.4.3. The accumulated hour, day, and week profiles are evaluated separately, using different sets of rules. Evaluation is data driven; the timestamp within the incoming data is used to decide when it is time to evaluate. Evaluation is performed as follows.

At the beginning of a new hour:

- 1. The hour just finished is evaluated.
- 2. The hour's data is added to the current day.
- 3. The day thus far is evaluated.

At the beginning of a new day:

- 1. The day just finished is evaluated.
- 2. The oldest day is dropped from the moving week.

Table 2-8. Composite Profile: System Vulnerability

Root errors	Counters that tally the occurrences of system files owned by a user other than root, root umask set in- correctly, and other root configura- tion errors.
Access errors	Counters that tally the occurrences of sensitive directories, files, and devices that are world writable/readable.
Group file errors	Counters that tally formatting and content errors in /etc/group.
Password file er- rors	Counters that tally formatting and content errors in /ect/passwd.
User file errors	Counters that tally world writable user critical files (e.g., .rhosts, .login, .cshrc) and world readable .netrc files.
Anonymous FTP errors	Counters that tally incorrect anonymous FTP configurations.
Permission errors	Counters that tally the occurrences of various combinations of permis- sion problems.

Table 2-9. Composite UID Profile: Misuse Indication

UDB Changes	Counters that tally additions, dele-
	tions, and modifications to /ect/udb.
System file	Counters that tally all changes to
changes	various system files, e.g., telnetd, /bin/login.
Sequence failures	Count of the number of out-of-se- quence data packets received from the client.
Invalid keys	Count of the number of invalid data packets received from the client (with an incorrect shared secret).
Invalid source	Count of the number of data packets received from a source other than the target Cray
Invalid label	Count of the number of data packets whose internal labeling is incorrect.

- 3. The new, just completed, day is added to the moving week.
- 4. The new moving week is evaluated.

This approach has a number of advantages. First, all profiles will be evaluated within a maximum of one interval (currently one hour), so all recognizable events will be detected within that period. This evaluation interval can be shortened by resetting a 'granularity' parameter. Second, there is no discontinuity in the data being evaluated. Third, a history of recent activity (at least per week) is maintained on-line. Fourth, the process lends itself well to near (within the smallest interval) realtime processing. Fifth, the data-driven approach enables NADIR to adjust easily to Cray down time or missing data.

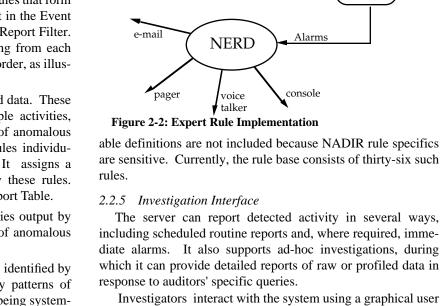
2.2.4.2 Rule Development

An important first step in developing our expert rule set was interviewing the experts -- ICN security personnel. Interviews of administrators charged with establishing and enforcing the Laboratory's security policy were straightforward. The Laboratory has a well defined and documented security policy. Interviewing security auditors took time but was extremely fruitful. We found that auditors rely on an undocumented combination of extensive knowledge of the ICN, experience with previous intrusions or misuses, and instinct.

Another important part of our rule development was a statistical analysis of the audit record from the target Cray. We spent months reviewing the raw audit data. From this review we learned enough to implement an initial set of profiles, from which we calculated the characteristics of average UID and system behavior. We then studied those profiles that deviated significantly from the norm to determine which deviations comprised a suspicious event, particularly if combined with other indications.

This process of interviews and statistical analysis led to the definition of an initial rule set. We then tested it against months

of audit data. This testing phase helped us discover previously unidentified misuse scenarios and implement new rules to detect them. This process of testing and revising our rule set will be an ongoing one, as we continually aim to improve the accuracy of our system.


2.2.4.3 Rule Implementation

Expert rules are applied to the individual and composite profiles at the end of each interval, as described in Section 2.2.4.1. We have defined expert rules for three different intervals. *Hour rules* are applied at the end of each hour. *Day rules* are applied at the end of each hour, for the day thus far (one to twenty-four accumulated hours). *Week rules* are applied at the end of each day for the current moving week (the current just-completed day plus the previous six days).

The server rule base comprises four logical rule filters, each designed to isolate certain types or levels of anomalous activities. We started by abstracting ICN security policy and well-defined invalid and suspicious behavior into rules that form the Primary Filter. Further refinements will result in the Event Filter. Report requirements supplied rules for the Report Filter. The Alarm Filter will determine the alert resulting from each event. The server activates the rule base filters in order, as illustrated in Figure 2-2.

- The **Primary Filter** applies rules to the profiled data. These rules are straightforward descriptions of simple activities, each serving to distinguish a separate feature of anomalous behavior. The Primary Filter applies these rules individually; it does not correlate one with another. It assigns a Level-of-Interest to each anomaly defined by these rules. The results of this analysis are stored in the Report Table.
- The **Report Filter** applies rules to the anomalies output by the Primary Filter, to produce routine reports of anomalous behavior.
- The **Event Filter** applies rules to the anomalies identified by the Primary Filter. These rules try to identify patterns of anomalous activity that have a good chance of being systematic misuse (events). They specify what action to take when events are found, such as the scheduling and content of warning messages. The results of this analysis are stored in the Event Table. Each event remains 'active' in the Event Table until security auditors resolve it off-line. Then it is flagged 'inactive' by the auditors. Inactive events are flushed from the table at regular intervals.
- The **Alarm Filter** applies rules that manage appropriate notification of urgent or critical anomalous activity. It determines what level of alarms should be sent, and to who, and manages their frequency.

We encode our expert rules in a condition-action (if-then) form. The condition (if) describes a suspicious profile scenario or a violation of security policy. The action (then) specifies setting a level of interest for the relevant user (or composite user) profile. Table 2-10 gives an example of one complete rule. This rule focuses on the ratio of logon failures to total logons. Vari-

Profile data

Hits

Report Data

Event Data

Primary

Filter

Event

Filter

Profiles

Report

Table

Event

Table

Investigators interact with the system using a graphical user interface that executes on a Macintosh. Constructed using Omnis 7, the interface provides an integrated view of system performance and rules analysis across all NADIR systems within the Open or Secure networks. The Omnis application interrogates the NADIR databases and displays relevant system performance graphs and rule analysis results for the investigator. Ad hoc queries into the NADIR database profiles and logs are also provided.

UNICOS Audit Record

Report Data

Off-Line Resolution

Alarm Status

Event Data &

Alarm Status

Report

Filter

Alarm

Filter

Routine

Reports

2.2.5.1 Immediate Reports

Critical events are reported when they are detected. These are events that require prompt investigation. The server assigns a priority to each event, depending on its criticality. After the completion of phase 2, it will output an announcement to the NADIR console and notify a dedicated ICN system whose function is to log and report events for the entire ICN. This system is the Network Events Recording Device, or NERD [11]. The NERD provides four types of notification; a broadcast using

Table 2-10. RULE-CU-A-006 (Failure ratio)

IF end of an hour
ctot_hour_logons = tot_csucc_logons + tot_cfail_logons
current_ratio = tot_cfail_logons/(ctot_hour_logons)
THEN
IF (ccurrent_ratio is > case n_min AND \leq case n_max)
THEN
IF ctot_hour_logons > $ctot4_n_hour_max$
THEN Set Rule CUH-006 to 4 in the Report_Table
ELSE IF ctot_hour_logons > ctot3 n_hour_max
THEN Set Rule CUH-006 to 3 in the Report_Table
ELSE IF ctot_hour_ogons > ctot2 n_hour_max
THEN Set Rule CUH-006 to 2 in the Report_Table
ELSE IF ctot_hour_logons > ctot1 n_hour_max
THEN Set Rule CUH-006 to 1 in the Report_Table
EXPLANATION: Greater composite failure ratio than is normal for the previous hour.
IF end of an hour
ctot_day_logons = tot_csucc_logons + tot_cfail_logons
current_ratio = tot_cfail_logons/(ctot_day_logons)
THEN
IF (current_ratio is > case_min AND \leq case_max)
THEN
IF ctot_day_logons > ctot4 n_day_max
, , , , ,
THEN Set Rule CUD-006 to 4 in the Report_Table
ELSE IF ctot_day_logons > ctot3 _n _day_max
THEN Set Rule CUD-006 to 3 in the Report_Table
ELSE IF ctot_day_logons > ctot2 _n _day_max
THEN Set Rule CUD-006 to 2 in the Report_Table
ELSE IF ctot_day_logons > ctot1 _n _day_max
THEN Set Rule CUD-006 to 1 in the Report_Table
EXPLANATION: Greater composite failure ratio than is normal for the day thus far.
IF end of a day
ctot_week_logons = tot_csucc_logons + tot_cfail_logons
current_ratio = tot_cfail_logons/(ctot_week_logons)
THEN
IF (current_ratio is > case_mmin AND \leq case_mmax)
THEN
IF ctot_week_logons > ctot4 n_week_max
THEN Set Rule CUW-006 to 4 in the Report_Table
ELSE IF ctot_week_logons > ctot3n_week_max
THEN Set Rule CUW-006 to 3 in the Report_Table
ELSE IF ctot_week_logons > $ctot2_n_week_max$
0 H
THEN Set Rule CUW-006 to 2 in the Report_Table
ELSE IF ctot_week_logons > ctot1 _n _week_max
THEN Set Rule CUW-006 to 1 in the Report_Table
EXPLANATION: Greater composite failure ratio than is normal for the current week
(the last seven days).

synthesized speech, paging, e-mail, and console display. The NERD will then take appropriate notification based on priority, responsible individuals, and other information supplied by NADIR.

2.2.5.2 Scheduled Reports

The server routinely generates reports every day. These reports cover the just-completed day and the just-completed moving week (the just-completed day and the prior six days). These reports are transmitted to authorized personnel and stored electronically. Hardcopy summary reports are output once per calendar week.

The daily reports consist of a one-page activity summary, e.g., the number of active UIDs during the report interval, and the number of successful and unsuccessful user requests during that interval. There is also a set of graphs of different types of activity, plotted over time with a granularity of one hour. These are useful for representing abnormal patterns, such as an unusual spurt of off-hour usage. The rest of the report summarizes the results of the expert rule analysis. It lists suspicious UIDs in descending priority order (from the most suspicious to the least), with a list of the rules each has triggered. Finally, it lists all current (unresolved) events of interest, along with a list of events resolved during the report interval. To support investigator follow-up, the server also produces a more detailed daily report that includes all raw data from the audit record. This data is the unprocessed audit record as received from the monitored Cray. Auditors occasionally need to review this data while attempting to ascertain what has happened during an event.

The server stores these regularly scheduled reports in a secure portion of our permanent file storage, where they can be accessed and reviewed only by authorized personnel.

2.2.5.3 Ad-Hoc Reports

The server can produce reports on demand. On-the-spot reports have proved invaluable in analyzing ongoing events. Finally, we use raw or profiled data that the server has saved to permanent file storage to perform ad-hoc background analyses of current and past activity. Authorized security personnel can examine this data using Sybase's built-in facilities, or pipe data to a statistical software package for more detailed analysis.

2.3 Off-Line Activities

Every day, security investigators review that day's report, and the current moving week's report. When required, they review immediate alarms. They examine each anomalous event and decide whether to investigate it further. They analyze user or system audit data and may interview indicated users. An investigation may result in a warning to a user, or the user losing, at least temporarily, their ICN privileges. More often, it results in a learning experience for the user. The auditors file a short report at the completion of each investigation, giving details of its resolution. These reports, and periodic reviews of NADIR by the security auditors, provide valuable feedback from which we continually try to improve the system. User response to these investigations has been surprisingly positive.

2.4 Data Integrity

We take care to protect the integrity of the Cray audit record throughout its life span. We treat it as sensitive because of its importance to security and accounting, and because its integrity is critical to ensure the validity of the intrusion and misuse detection process. Only a small set of system managers have access to the audit record on the Crays, in the file storage archive, and throughout the process of transmitting and analyzing it. We keep audit records in a secure part of the ICN, transmit them over secure lines, and backed them up routinely. Only authorized security auditors may examine any portion of the data or the reports generated by NADIR. We treat the results of investigations as sensitive. Such management activities are essential to the integrity of, and user trust in, the whole audit process [9].

3 Future Directions

UNICOS NADIR is nearing the end of Phase 2 development. During the coming year we expect to:

• Expand collection and analysis to all pertinent data in the Security Log

- Expand collection and analysis to additional logs (e.g., process accounting logs, sulog, tcp/ip logs)
- Complete the user-friendly graphical user interface for investigative personnel
- Provide near realtime notification of critical events using the NERD
- Explore and perhaps implement active responses to critical events

Another future goal is to explore the possibility of supplementing our expert rulebase with a true anomaly detection component that "learns" typical behavior for each user, then reports deviations from these norms. Anomaly detection may also be applied to system-wide activity.

References

- R. Baldwin. Rule-Based Analysis of Computer Security (Massachusetts Institute of Technology, June 1987)
- [2] K. Jackson. Development and Analysis of User Authentication Profiles for an ICN Intrusion Detection System (Los Alamos National Laboratory, Technical Report, June 1989)
- [3] SPI Security Profile Inspector, Installation and User's Manual (Lawrence Livermore National Laboratory, 1989)

- [4] D. Farmer, E. Spafford. *The COPS Security Checker System* (Proceedings of the Summer Usenix Conference, June 1990)
- [5] K. Jackson, D. DuBois, and C. Stallings. A Phased Approach to Network Intrusion Detection (Proceedings of the United States Department of Energy Computer Security Group Conference, May 1991, LA-UR-91-334)
- [6] K. Jackson, D. DuBois, and C. Stallings. An Expert System Application for Network Intrusion Detection (Proceedings of the 14th National Computer Security Conference, October 1991, LA-UR-91-558)
- [7] J. Hochberg, K. Jackson, J. McClary, D. Simmonds, Addressing the Insider Threat (Proceedings of the United States Department of Energy Computer Security Group Conference, May 1993, LA-UR-93-1181)
- [8] J. Hochberg, K. Jackson, C. Stallings, J. McClary, D. DuBois, J. Ford. NA-DIR: An Automated System for Detecting Network Intrusion and Misuse (Computers and Security, Elsevier Science Publishers Ltd., Volume 12, Number 3, May 1993, LA-UR-93-137)
- [9] K. Jackson, Management Issues in Automated Audit Analysis: A Case Study (Proceedings of the 8th European Conference on Information Systems Security, Control, and Audit, September 1993, LA-UR-93-2520)
- [10]S. Smaha. A Common Audit Trail Interchange Format For UNIX (Haystack Laboratories, Inc., Technical Report, May 1994)
- [11]D. Simmons. Network Event Recording Device: An Automated System for Network Anomaly Detection and Notification (Los Alamos National Laboratory, Technical Report, August, 1994)