

42

CUG 1995 Fall

 Proceedings

Migrating Applications to the CRAY T90 Series IEEE
Floating Point

Doug Petesch

, Cray Research, Inc, Eagan, Minnesota

ABSTRACT:

 As of the fall '95 CUG meeting, applications have been running in IEEE mode
on the CRAY T90 for only a week. By the time the proceedings are published, more information
will be available in the "Migrating to the CRAY T90 Series IEEE Floating Point" manual
(SN2194 2.0). This paper documents the efforts to date of the Third Party Applications Group
to help vendors of major Cray applications make their codes available in IEEE-mode. It will
form the basis of a section in the SN2194 manual.

Introduction

This paper deals with migrating applications that already run
on Cray PVP (Parallel Vector Processing) systems to the CRAY
T90 series with IEEE floating point. Such applications prob-
ably don't need the added accuracy, multiple rounding modes or
other special features of IEEE floating point arithmetic.
However, over the years they may have developed dependen-
cies on compiler, library or non-floating point hardware features
that also have changed.

Most applications running on Cray PVP systems today are
compiled with cf77 6.0 or scc 4.0 and loaded with UNICOS 7 or
8 libraries. None of these will be available on CRAY T90
systems with IEEE floating point. The first, and probably
biggest step in migrating an application is to get it running on a
CRAY C90 with the 2.0 Programming Environment (f90 2.0
and scc 5.0 compilers and associated libraries). This will isolate
numeric differences due to the new compilers and libraries from
those due to the new floating point hardware. This paper will
concentrate on FORTRAN applications.

The next step is to adapt to the larger address space and other
new features of all CRAY T90 systems, regardless of floating
point format. The final step is to take into account the differ-
ences between CRAY and IEEE floating point. This may be the
easiest step and only involve recompiling.

CF77 to F90 Migration

F90 is a full Fortran 90 compiler. When the 2.0 version is
released, it is intended to give performance equal to or better than
cf77 on Fortran 77 code. Most existing applications do not need
the new language features of Fortran 90. However, they may use
cf77 Fortran 77 extensions that behave differently in f90. There

are also some differences in Namelist and formatted I/O between
cf77 and f90. For more information, see the "Fortran 90 Features
and Differences" publication (TR-CF90 A).

CF77 treated variables of type POINTER almost the same as
variables of type INTEGER. F90 enforces the FORTRAN 90
restrictions on what operations can be performed on pointers.
Specifically, POINTER type variables cannot be multiplied or
divided or be arguments to most functions.

The LOC intrinsic function returns a result of type
POINTER. Applications that got away with improper usage of
the LOC function with cf77 will have to be changed to run with
f90. Figure 1 shows an example of code from a major applica-
tion that had to be changed when compiled with f90.

C Illegal, but worked with cf77.
INTEGER FUNCTION CORWDS(II,JJ)
CORWDS = 1 + ABS(LOC(II)-LOC(JJ))

C Correct usage in both cf77 and f90.
INTEGER FUNCTION CORWDS(II,JJ)

C Convert result from pointer to integer.
INTLOC = LOC(II) - LOC(JJ)
CORWDS = 1 + ABS(INTLOC)

Figure 1: LOC function usage.

The f90 compiler optimizes code differently than cf77 did.
For example, f90 enforces the rule that dummy argument arrays
may not be indexed past their declared dimension, unless it is 1,
2 or '*'. If an array is dimensioned less than the vector length of
the machine, f90 may treat loops referencing the array as if they
were preceded by a CDIR$ SHORTLOOP directive. That can
increase performance, but if the actual usage of the array
extends past the declared dimension, the results are undefined.

In the example shown in figure 2, the actual number of itera-
tions of the loop would be the remainder of 200 divided by theCopyright © Cray Research Inc. All rights reserved.

CUG 1995 Fall

 Proceedings

43

machine vector length (ie. 72 on a CRAY C90 or CRAY T90 and
8 on a CRAY Y-MP or CRAY J90). Any application that uses
array elements past the declared dimension of the dummy argu-
ment should change that dimension to ‘*’, or be compiled with
the f90 -Ooverindex. This tells the compiler not to perform this
particular shortloop optimization.

dimension junk(200)

call fill(junk,200)

print*,junk

end

 subroutine fill(j,k)

 integer j(3) !should be j(1) or j(*)

 do i=1,k !f90 treats as shortloop

 j(i)=i ! unless -O overindex

 end do

 end

Figure 2: Overindexing of a dummy array.

Most of the changes required to get applications running with
f90 involve fixing code that was illegal to begin with, but
happened to work with cf77. Once those changes are made, it is
possible to take advantage of the new optimization features. For
example, f90 generates more efficient vector code for many
types of nested loops.

General CRAY T90 Series Features

There are other features of the CRAY T90 series, indepen-
dent of floating point format, that need to be considered when
migrating applications. Like the CRAY C90, it has 128 element
vector registers compared to 64 on CRAY Y-MP systems.
Assembly code that uses vector mask instructions on a CRAY
Y-MP may have to be modified. Also like the CRAY C90, it has
vector shift instructions that along with the longer vector regis-
ters make the order of additions different in reduction loops.
This may cause numeric differences compared to a CRAY
Y-MP even on a CRAY T90 system with CRAY floating point.

All CRAY T90 systems have a scalar cache. Most third party
applications available on Cray T90 systems with Cray floating
point run in CRAY C90 compatibility mode. They still get the
advantage of the cache when run on a single processor.
However the operating system must turn off the scalar cache if
such an executable is multitasked and run with NCPUS set to a
value larger than 1. Executables built in native T90-mode, with
either Cray or IEEE floating point, will get the advantage of the
cache even when run in parallel. The multitasking libraries
make sure that each processor’s cache is synchronized with
main memory at appropriate points.

CRAY T90 systems have a larger address space than previous
CRAY PVP systems. Address registers are 64-bits compared to
32-bits for the CRAY C90 or CRAY Y-MP. Certain scalar
memory instructions require 4 parcels in T90-mode instead of 3.

This can cause a slight loss of performance in scalar sections of
code.

A major consequence of the larger address space is that a
Fortran character descriptor (FCD) must be 2 words instead of 1
as it has been since the Cray-1. FCDs are used to pass Fortran
character variables from one routine to another. Although it has
always been illegal, there are times when it works to pass char-
acter actual arguments to integer or real dummy arguments or
vice versa on previous CRAY PVP system. Figure 3 shows an
example of such a mismatch of argument types that will cause
errors in T90-mode.

C Illegal, but works on C90, Y-MP, J90.
C Fails on T90 because of 2 word FCD.

CHARACTER*8 concat
I=4Htest
J=4Hcase
CALL cat(I,J,concat)

SUBROUTINE cat(I,J,concat)
CHARACTER I*4, J*4, concat*(*)
concat = I // J
end

Figure 3: Mismatch of dummy and actual argument types.

The cft77 -Ra run-time argument checking option can be used
to locate any such occurrences of mismatched types between
caller and callee within Fortran. A similar error can occur when
calling a C routine with a Fortran character variable as an actual
argument. The _fcd macros in <fortran.h> must be used in the
C routine to properly declare the type of the argument and to
convert Fortran character variables to C strings and back. These
procedures were formally required on previous CRAY PVP
systems too, but some applications did get by without using
them.

A number of Fortran-callable library routines that exist on
CRAY C90 and CRAY Y-MP systems allow some arguments to
be either character variables or Hollerith argument (characters
packed in an integer or real word). Some of these routines (ex.
FOPEN, FREAD, FWRITE, etc.) only allow character type
actual arguments on CRAY T90 systems. The rest are not avail-
able at all (ex. GETOPT, GETENV, UNAME, STAT, etc.).
Instead, new entry points with similar functionality have been
created. When possible, the new interface routine follows the
interface description provided in IEEE Std 1003.9-1992. The
new entry points are available on all CRAY PVP systems.

IEEE Floating Point Specifics

Once an application runs correctly using the new compilers
on a CRAY T90 system with Cray floating point, the additional
changes required to make it work on IEEE CPUs should be rela-
tively minor. Any bit manipulations, including data initializa-
tion, of floating point values must adapt to the different number
of mantissa and exponent bits. Figure 4 shows the IEEE 64-bit

44

CUG 1995 Fall

 Proceedings

format compared to the CRAY floating point format. Note that
the mantissa in both formats is normalized. In IEEE the leading
mantissa bit is implied, but not stored, which effectively gives it
a 53-bit mantissa.

Figure 4: 64-bit floating point formats.

Generally, the extra mantissa bits make the IEEE mode calcu-
lations more accurate. Therefore, some tolerances used for inte-
gration or iterative algorithms may have to be changed.
However, the smaller exponent field means 64-bit IEEE
numbers are limited to a magnitude of about 10**308 compared
to 10**2465 for CRAY floating point numbers.

The IEEE mode CRAY T90 CPUs support an instruction for
SQRT. They also have a divide instruction instead of the CRAY
floating point reciprocal approximation. These instructions
could increase the performance of codes that perform many
square roots or divides.

The IEEE mode compilers and libraries for the CRAY T90
series support the additional numeric concepts defined in the
IEEE standard such as rounding modes, NaNs (Not a Number),
signed infinity and signed zero for programmers who wish to use
them. Comparison operations have to deal with these end cases
so they may take slightly longer than the equivalent operation on
a CRAY floating point CPU.

The IEEE standard does not define a 128-bit format. The
CRAY T90 system uses the same 128-bit format as on SPARC
systems. This format has more exponent bits than the 64-bit
IEEE format. That means the first word of a double precision
term will not be a valid single precision number like on previous
Cray PVP machines. That means double precision arrays can't be
passed as stride 2 single precision input arrays. Some shifting of
bits is required to convert between single and double precision.
Figure 5 shows the 128-bit double precision format used on
IEEE systems compared to the CRAY floating point format.

The internal representation of Fortran LOGICAL variables is
also different on CRAY T90 systems with IEEE floating point.
It matches the representation used on Cray MPP and SPARC
machines and in the C language. The logical true/false test is
whether the word is non-zero or zero instead of negative or posi-
tive. Any inter-procedural aliasing of integer and logical vari-
ables that relies on the sign bit for the true/false test will have to
be changed.

Data Conversion

CRAY T90 systems with IEEE floating point can potentially
share unformatted data files more easily with other IEEE
machines than previous Cray PVP machines could. However,
the size of all integer and logical values is 64-bits on Cray
systems and usually 32-bits on non-Cray systems. The
UNICOS assign command and explicit data conversion library
routines can often be used to share unformatted files with 32-bit
IEEE as well as Cray floating point machines.

Applilcation Case Study

ADAMS is a multibody dynamics code for modeling
mechanical systems. The small sparse systems of equations can
be quite stiff so it uses an implicit predictor-corrector time inte-
gration scheme. It has run on Cray systems for 15 years, but has
always been numerically sensitive. Mechanical Dynamics, Inc.
(MDI) has tried various error tolerances, but the Cray version
often takes smaller time steps than when using 64-bit IEEE
floating point.

ADAMS v7.0 has about 2500 routines and 500,000 lines of
code. The existing Cray version called 3 of the Fortran interface
routines not supported on CRAY T90 systems. After making
changes to call alternate routines and working around 1 f90 bug
that has since been fixed, ADAMS compiled and built correctly
in IEEE mode the first try. Two tolerance values that had been
changed by several orders of magnitude on previous Cray
systems were restored to what MDI uses on other IEEE
machines. ADAMS was also compiled in 128-bit double preci-
sion on the CRAY C90 with f90. In that case, the tolerances
were changed by several orders of magnitude the other way.

The results of running a small test case in IEEE mode on a
CRAY T90 system matched the 128-bit CRAY C90 results
almost exactly. Both required fewer time steps than the 64-bit
CRAY C90 run whose results differed by a few percent from the
first 2 runs.

Figure 5: 128-bit Floating point formats.

