

CUG 1996 Fall

 Proceedings

185

Kerberos/DCE, the Secure Shell, and
Practical Internet Security

Wayne Schroeder,

 San Diego Supercomputer Center, San Diego,
California, U.S.A.

ABSTRACT:

Continuing with work described at the Fairbanks (Fall 1995) CUG conference,
SDSC now has an operational Kerberos environment for authentication/encryption within
SDSC (Cray, Paragon, and workstations) and we are integrating it with DCE systems (DCE
security daemon (“secd”) and HPSS). However, instead of extending these services to our
national (and international) user community, we are using more focused and concise software
systems, the Secure Shell (SSH and F-SSH) and Secure Network Key (SNK), to meet our imme-
diate Internet goals. This paper will discuss Kerberos/DCE, the Secure Shell, and SNK, how we
are using them, and our longer-term Single-Sign-On goal.

Introduction

Of necessity, computer security is a continuing SDSC focus.
As Tom Perrine, manager of SDSC’s Security Technologies
team, has noted [1], cracking tools are now being shared, attacks
are becoming more sophisticated, and the use of plain-text pass-
words is the most significant security problem in our distributed
environment. For SDSC, as with most Internet sites, plain-text
passwords, exploited via simple network “sniffing,” is a key
vulnerability.

SDSC is using DCE/Kerberos, the Secure Shell, and Secure
Network Keys (one-time passwords) to mitigate this problem.
In this paper, we will help introduce the Cray community to a
valuable new tool, the Secure Shell, describe SDSC’s current
and planned use of Kerberos/DCE and other tools, briefly
describe our HPSS plans (with particular emphasis on secure
authentication), and outline some related SDSC initiatives.

The Secure Shell—A Valuable New Tool

The Secure Shell is a valuable new tool for improving
Internet security, either in conjunction with Kerberos/DCE or
independently deployed. In this author’s opinion, it is the most
practical currently available solution for some of the more
serious Internet security problems. For sites without the
resources for a full Kerberos/DCE installation, the Secure Shell
offers a relatively simple and easily provided solution.

Both the Secure Shell (SSH) and Kerberos/DCE deal effec-
tively with the plain-text password problem. Each also has addi-
tional features, with some overlapping general functionality.

The Secure Shell is like the PGP of interactive access. It is a
relatively simple, freely available solution that solves a difficult
problem today, while large organizations are still in the process
of creating more complex solutions. It was created mostly by
one person, Tatu Ylönen <ylo@cs.hut.fi>, at Helsinki Univer-
sity of Technology, Finland.

Kerberos, for example, has been under development for
many years and is still in Beta (currently Kerberos version 5
Beta 7). DCE has also been under development for many years
and still relies on Kerberos utilities for secure network authenti-
cation. Both are fairly large and complex systems. The current
Kerberos 5 Beta 7 and Beta 6 are much cleaner and easier to
install than previous Kerberos systems, but they are still under
development.

We currently have SSH running on our Cray C90, Paragon,
IBM SP2, and most workstations: Suns (SunOS and Solaris),
SGIs (R4000s, R8000s, and an R10000), DEC Alphas, IBM
RS6000s, and PC’s running NeXTStep and Windows NT. SSH
runs on a large number of Unix systems, and there is a commer-
cial version (F-SSH) available for PCs (and, soon, Macintoshes)
from Data Fellows Ltd. [2] Data Fellows also markets and
supports a commercial Unix version.

We strongly recommend the use of SSH to the SDSC user
community. It is relatively easy to install, can be run indepen-
dently (i.e., individual workstations can run SSH without
site-wide coordination), provides strong password protection,
encrypts X-window sessions, and provides additional security
and convenience.

186

CUG 1996 Fall

 Proceedings

Source, documentation, and configure/make scripts are freely
available for Unix systems via the SSH home page [3]. Also see
the SDSC remote site SSH suggestions.

As described on the SSH home page, SSH (Secure Shell) is a
program to log into another computer over a network, to execute
commands in a remote machine, and to move files from one
machine to another. It provides strong authentication and secure
communications over insecure channels. Its features include the
following:

• Strong authentication. Closes several security holes (e.g., IP
routing, DNS spoofing, and listening for passwords from the
network). New authentication methods: .rhosts together with
RSA-based host authentication, and pure RSA authentica-
tion.

• All communications are automatically and transparently
encrypted. Encryption is also used to protect against spoofed
packets and hijacked connections.

• X11 connection forwarding provides secure X11 sessions.
This is normally provided automatically for the user.

• Arbitrary TCP/IP ports can be redirected over the encrypted
channel in both directions.

• The client RSA-authenticates the server machine in the
beginning of every connection to prevent Trojan horses (by
routing or DNS spoofing) and man-in-the-middle attacks.
The server RSA-authenticates the client machine before
accepting .rhosts or /etc/hosts.equiv authentication (to pre-
vent DNS, routing, or IP spoofing).

• An authentication agent, running in the user’s local worksta-
tion or laptop, can be used to hold the user’s RSA authentica-
tion keys.

• Multiple convenience features fix annoying problems with
rlogin and rsh.

SSH is intended as a complete replacement for rlogin, rsh,
rcp, and rdist. It can also replace telnet in many cases.

The basic operation is very simple, much like telnet. On a
workstation, a user enters ssh and the name of a host. For
example,

ssh

hostname

will create a login session (as with telnet or rlogin), but the
entire session will be encrypted, including the password and any
passwords used with ‘su’. For many users, that is all they need
to learn.

SSH also provides a remote copy (scp) capability which is
preferable to rcp, as it provides stronger authentication and can
encrypt the transmitted data.

Users who use SSH frequently can use alternative SSH
authentication mechanisms instead of passwords. By running
‘ssh-keygen’ they can create a pair of RSA public/private keys.
They then copy the individual public key to the systems they
want to log into, into the file ~/.ssh/authorized_keys. At SDSC,
since this file is NFS mounted on most of our workstations, users
will be able to SSH to most workstations without a password. An

example and details are available from an SDSC SSH example
page (see the WWW version of this paper for the URL).

When users run ssh-keygen, by default, the individual public
and private key files are stored in their home directory (in
~/.ssh). One’s private RSA key is like a password and should be
protected, so it shouldn’t be stored in an NFS file system (the
data would traverse the network in the clear). Instead, users can
store it on the local workstation, for example, in /tmp/id,
encrypting it with a short password, and/or using the ssh-agent
to hold the decrypted key. SSH man pages explain how to use
these facilities.

SDSC developed a number of extensions for the SSH daemon
to run properly on the Cray C90 under Unicos 8 and 9.0, and
these are available in the current SSH release. This includes PTY
handling, setting up the session account (via acctid), setting up
the job (via setjob), and setting limits and permissions (via
setlimits). The foundation routines, including encryption, had
previously been ported to the Cray, but SDSC was the first to
completely install it (i.e., run it as root).

The Cray version of the SSH daemon does not, however,
prompt for account selection as Cray Research’s login does,
when users have multiple accounts available on a particular user
id. For the time being, this is acceptable.

The SSH protocols and algorithms are fairly efficient, and so
the encryption, while not free, is not excessively costly either.
An SSH session to a Paragon node has significantly better inter-
activity (quicker echoing of keystrokes) than an encrypted
Kerberos session (krlogin -x), at least with our port of the krlogin
daemon (basically 5 beta 5 code).

Even with DCE/Kerberos available at SDSC, we are using
SSH as an option for users, both internally and remotely.
Attempting to support Kerberos for our nationally distributed
user community on a wide variety of platforms would have been
prohibitively difficult. SSH, although not trivial, can often be
compiled and installed by users themselves.

(It should be noted that the current Kerberos release (5 Beta
7) is much more solid than previous versions. On many worksta-
tions, it can now be configured, compiled, and installed with few
difficulties. However, it is still substantially larger and more
difficult to work with than SSH.)

SSH uses RSA to exchange a private key for each session,
and then uses conventional encryption (including triple DES and
IDEA) for the session. Each host has an RSA public/private key
set and the SSH daemon (SSHD) maintains an RSA
public/private key set for itself (which it changes periodically).
When an SSH client connects to the SSH daemon, the SSH
daemon sends its host and daemon public keys. The SSH client
randomly picks a session key, RSA encrypts it in both keys, and
then sends it to SSH daemon. Only the SSH daemon will be able
to decrypt the packet. The SSH client and server then have a
shared secret key for the session.

The licensing and legality issues for SSH are a little compli-
cated due to the use of RSA, IDEA, and encryption technology
in general, but are becoming less so since Data Fellows now has

CUG 1996 Fall

 Proceedings

187

RSA and other licenses. Reportedly, SSH can be used legally
anywhere (except in France and a few other countries where
all encryption is forbidden). The commercial version can be
used legally almost anywhere, since it includes the required
patent licenses. The non-commercial version can also be used
legally for non-commercial purposes, as the RSA patent is not
valid outside of the U.S., and non-commercial use of IDEA is
allowed without a license. Also, the U.S. government can use

 Security Function or
Attribute

Secure Shell Kerberos/DCE Security

Encrypts/Conceals Interactive
Passwords

Yes Yes

Encrypts Entire Interactive Ses-
sion

Yes, default Yes, optional

Secure Passwordless Logins Yes, user managed, developing
Single Sign-On

Yes, possible Single Sign-On

Authentication Forwardable Yes, currently difficult Yes

Centralized Password Adminis-
tration

No Yes

Each Computer Independent (i.e.
no site-wide coordination needed)

Yes No

File Transfer (rcp-like, without
plain-text passwords)

Yes Yes

Encrypts File Data Yes, default Yes, optional

Encrypts/Conceals FTP Pass-
words

Planned Yes, if using Kerberized ftp and
ftpd

Encrypts X-Windows Sessions Yes No

Compresses Terminal and/or
X-Windows Data

Yes, often 3-5 X No

Encrypts Arbitrary Sockets Yes No

Requires Synchronized Clocks No Yes, currently

Application Programming Inter-
face

Planned Yes

Available For Many Unix Sys-
tems

Yes Yes

Available For Macs Very soon V4, V5 Probably

Available For PCs Yes, Prerelease/Commercial V4, Good V5s are rare

Source code size (SSH 1.2.14,
Kerberos 5B7)

About 44,000 lines (203 *.c files)About 250,000 lines, 975 *.c files

Available for Crays Yes, as distributed Yes, Cray DCE 1.1, or from SD-
SC, or Sandia

Can it be used legally in the US Probably Probably

Can it be used legally outside the
US

Yes (as understood) Maybe

RSA without a license because it was invented at MIT with partial
government funding. So it appears that the non-commercial
version is suitable for educational and non-commercial use (i.e.,
where use of the SSH/RSA/etc package is not being sold). Addi-
tional information is available with the distribution and on the web
pages.

The following table summarizes the key features and attributes
of SSH and Kerberos.

188

CUG 1996 Fall

 Proceedings

Kerberos/DCE

Although SSH provides much, we are continuing to make use
of Kerberos/DCE security and expect to make greater use of it in
the future. DCE has strong support from many vendors, and may
be growing in popularity. Kerberos 5, after years of development
and Beta releases, is nearing final release and provides remote
access functionality in a DCE environment. HPSS (High Perfor-
mance Storage System), the new archival storage system being
developed by IBM Government Systems and four DOE labora-
tories, makes use of DCE. DCE authentication may eventually
make Single Sign-On a realistic goal.

DCE, the Distributed Computing Environment, is being
developed by the Open Group which was formed in early 1996
by the consolidation of two open systems consortia, X/Open
Company Ltd (X/Open) and the Open Software Foundation
(OSF). The Open Group includes a large number of computer
vendors including IBM, DEC, Microsoft, and SGI/CR (and,
until its merger with SGI, CRI).

DCE consists of multiple components that work closely
together, including the DCE Remote Procedure Call (RPC), Cell
and Global Directory Services (CDS and GDS), Security
Service, DCE Threads, Distributed Time Service (DTS), and
Distributed File Service (DFS). The Threads, RPC, CDS, Secu-
rity, and DTS components are commonly referred to as the
“secure core” and are the required components of any DCE
installation.

As reported at the Fairbanks (Fall 1995) Cray User Group
conference in “SDSC’s Installation and Development of
Kerberos” [4], SDSC was in the process of installing and porting
MIT’s Kerberos 5 Beta 4 network security software to SDSC
systems, including the C90, Intel Paragon, SUNs, DEC Alphas,
SGIs and RS6000s. Since then we have converted from a test to
a production system, and are now installing 5 Beta 7.

Converting to production required the regeneration and
secure distribution of the v5srvtab files (identification files) to
each host, and changing the realm name. We also ported and

installed Kerberized daemons on the Paragon, installed TCP
wrappers on the various Kerberos daemons, corrected some
additional bugs, and encouraged staff use.

We now consider this Kerberos system “production” in the
sense that it is available for general use and supported by
systems staff. Using it and SSH, we have significantly reduced
the number of plain-text passwords on our local network. We
still provide less secure services, though, such as telnet and
rlogin, although we discourage their use.

Although we had originally hoped to distribute Kerberos
clients to our user community, both legal and technical issues
prevented it. The legal issues involve the distribution of encryp-
tion technologies, and particularly a few months ago, it was not
clear what protections an organization must take to distribute
such software. We also felt that supporting a Kerberos distribu-
tion for a large number of remote sites, on a large number of
architectures, would be excessively problematic and
time-consuming.

We experimented with 5 Beta 5 version of the Kerberos
server (KDC) and its backwards compatibility with Kerberos
Version 4, but found that moving forward with the DCE security
daemon (“secd”) would offer us much more. With secd, we can
support a Kerberos 5 environment and DCE for HPSS. Rather
than supporting Kerberos 4, which is weaker than Kerberos 5,
we are finding other solutions for Macintoshes and PCs. These
include APOP for email, and soon SSH and/or Kerberos 5 for
Macintoshes, and SSH for PCs.

To deal with another major source of plain-text passwords on
our local network, the Macintosh Eudora email package, we are
installing Eudora with APOP support (see RFC 1939 Post Office
Protocol). Eudora periodically logs in to the email (Post Office
Protocol) server to access user email. Via APOP, this is handled
via a challenge/response authentication method.

The following table summarizes the SDSC Kerberos environ-
ment.

Architecture Operating System or
Function

Current Planned

 Cray Unicos 9.0 SDSC 5B4 Cray 5B5

 Intel Paragon OSF/1 SDSC 5B5 5B7

 Sun SunOS 4.1.x 5B7 5B7

 Sun Solaris 2.5 5B7 5B7

 SGI Irix 5.3 5B4 5B7

 SGI Irix 6.2 5B7 5B7

 Digital Digital Unix 3.x 5B4 5B7

 IBM AIX 4.1.4 5B6 5B7

 IBM AIX 3.2.5 5B4 5B7

 Sun/IBM Security Server 5B5 KDC DCE 1.1 secd

CUG 1996 Fall

 Proceedings

189

We are now installing the current version of Kerberos on our
workstations. This version, 5 Beta 7 (and 5 Beta 6 last summer),
is significantly improved from 5 Beta 5 and earlier versions and
can now be configured, compiled, and installed with few diffi-
culties. We have compiled Kerberos Version 5 Beta 7 on SunOS
4.1.4, Solaris 2.5, IRIX 5.3 and 6.2, and Digital Unix OSF/1 2.0.
KRB 5 Beta 7 was first installed on Solaris (as we had no
previous version of Kerberos there), and on IRIX (as there are
known bugs with the previous Kerberos installation there).

We are also integrating our DCE (HPSS) and Kerberos envi-
ronments. With changes and additions contributed by a DOE
working group, led by ANL (Douglas Engert), Kerberos 5 Beta
6 (and 5 Beta 7) can be combined with OSF/DCE by using the
DCE security server (secd) instead of the Kerberos KDC (Key
Distribution Center). This allows for single sign-on using the
DCE userid and password and provides the best features of both
DCE and Kerberos, e.g., DCE applications such as DFS and
kerberized clients such as rlogin, telnet, or FTP. These kerber-
ized clients can be run on machines with or without DCE, and
can be used to establish encrypted terminal sessions.

We plan to run a DCE secd to support HPSS DCE authenti-
cation (both internal to HPSS and for user authentication), and
to support our Kerberos environment. This will also provide
support for additional DCE services if needed. In the future, for
example, we may want to make use of the DCE Distributed File
System.

Cray Research now supports Kerberos 5 Beta 5 utilities and
daemons (ktelnet, klogin, krsh, kcp) as part of their DCE 1.1
product. This is a welcome and appreciated move. We plan to
purchase their product to replace our own port of 5 Beta 4. Our
current 5 Beta 4 ktelnet daemon is not functioning under Unicos
9.0, apparently due to Unicos 9.0 differences in the setsid and
related system calls.

Secure Network Key (SNK)

We are currently using Secure Network Key (SNK) for inter-
active logins through a gateway, and for remote UniTree access.

The purpose of our SNK gateway host is to provide secure
interactive access for staff and for a few general users. Staff can
use this while on travel so that the use of plain-text passwords
can be avoided (passwords used at conferences are frequently
compromised). A user telnet’s or rlogin’s to the SNK gateway
host and then rlogin’s to another SDSC host.

Similarly, SNK support in UniTree protects user passwords
during remote FTP access.

The SNK system works as follows. When a user makes
connection to a SNK enabled server, a challenge number is
displayed back. The user enters his Personal ID, and then this
challenge number on the SNK key pad, and types in the response
it provides. The server than compares that response with the
calculated appropriate response to verify authenticity. The SNK
card is about the size of a small calculator.

Thus it is a little cumbersome and inconvenient, but does
provide very secure access for a small number of people at a

reasonable cost. Of course, this wouldn’t scale well to our
national user community, where easy access for thousands of
users is a necessity.

High Performance Storage System

The High Performance Storage System (HPSS) is a new
archival storage system being developed by IBM Government
Systems, LANL, LLNL, ORNL, and Sandia. Other collabora-
tion partners and early deployment sites include NASA Langley
Research Center, Maui High Performance Computing Center,
the San Diego Supercomputer Center, Cornell Theory Center,
Fermi National Accelerator Laboratory, Caltech/Jet Propulsion
Laboratory, and the University of Washington. The HPSS archi-
tecture is based on the IEEE Mass Storage Reference Model:
version 5 and is network-centered. The control network uses the
DCE’s Remote Procedure Call technology. In implementation,
the control and data transfer networks may be physically sepa-
rate or shared.

An important feature of HPSS is its support for both parallel
and sequential input/output (I/O) and standard interfaces for
communication between processors (parallel or otherwise) and
storage devices. In typical use, clients direct a request for data to
an HPSS server. The HPSS server directs the network-attached
storage devices to transfer data directly, sequentially, or in
parallel to the client node(s) through the high-speed data transfer
network.

SDSC is running HPSS in test now on an IBM SP-2. The
SP-2 system will include 23 nodes (20 thin-nodes, 1 wide-node,
and 2 high-nodes), 1 TB of SSA (Serial Storage Architecture)
Disk, 60 GB of HIPPI attached RAID, and two 3494 tape
libraries. Some of this equipment is partitioned for specific
data-intensive applications. The HIPPI-attached disk will be
used for IPI-3 third-party transfer between HPSS and the Cray
C90, Intel Paragon, and SGI hosts. Network interfaces include
HIPPI, FDDI, ATM, and Ethernet.

We plan to migrate from NSL UniTree to HPSS as our
primary archival storage system in early 1997. We will migrate
metadata from our existing archive systems as we convert from
NSL UniTree to HPSS. We are also using HPSS as the founda-
tion for a number of major SDSC data-intensive initiatives (see
next section).

In addition to DCE RPC, HPSS makes use of DCE Encina as
a transaction processing layer. Encina provides journaling and
recovery mechanisms, and HPSS uses these to safeguard the
Metadata (directory and index information).

The HPSS Parallel FTP (PFTP) utility is a high performance
data transfer user interface, similar to FTP but with extensions to
allow users to transfer to and from HPSS across parallel commu-
nication interfaces.

Other user interface options will include the HSI utility which
is under development by SDSC (Mike Gleicher) and will be
shared with the HPSS community. HSI will include features of
its predecessor, UTI—an NSL UniTree Interface utility—with
extensions for HPSS including parallel I/O, class of service,

190

CUG 1996 Fall

 Proceedings

multi-threading, and scheduling. HSI uses the current HPSS API
which is DCE RPC- and Encina-based and so limited to DCE
platforms for which DCE is available. Since SDSC is not
currently running DCE on our major platforms, including the
Cray, we can not make use of this immediately. The HPSS team
(and/or SDSC) may develop a non-DCE/Encina API, which
would then be used by HSI.

For production and batch use, we are adding features from
UFTP (our current Unitree FTP user interface program) to
PFTP. Not only will this provide us with a simple, standard user
interface, but will also make the conversion process much
simpler for our users, since the basic user interface will be nearly
identical. Our DataTree to UniTree conversion, in contrast,
included a completely new user interface.

The UFTP features being incorporated into PFTP include
reliable exit status information, execute line stacking (multiple
FTP commands on a command line, separated by “;”), automatic
retry of recoverable errors (including distinguishing transitory
and permanent errors), and password-less secure authentication.

The authentication system for this PFTP/UFTP utility will
allow its use from batch jobs on the Cray without either placing
passwords into scripts or transmitting plain-text passwords
across the network. There are two main choices, a method
similar to our current Unitree UFTP mechanism or
Kerberos/DCE.

Our current UFTP mechanism uses a ‘verify’ daemon and
support software from LLNL. The UniTree FTP daemon is able
to connect to the verify daemon on the Cray and, via a three-way
handshake that includes the use of Unix file permissions,
confirm the identity of the user. This is similar to the ‘ident’
protocol (see RFC 1413 Identification Protocol), and we could
perhaps make use of it, either directly or with some modifica-
tion.

If we use this approach, we would have to DCE authenticate
on behalf of the user on the HPSS server. To do this, we may use
a program developed by Cornell Theory Center (Jeff Deutsch)
and Sandia (Bill Rahe) to access DCE credentials from a keytab
file.

Alternatively, we could use Kerberos or DCE authentication
on the Cray. This would be more in-line with the design of HPSS
but would require some support for long-duration and cron jobs,
since authentication credentials are normally set to expire after a
day or so. Unicos includes a mechanism that “borrows” the
restarting processes credentials. After that, the tickets (in the
NQE case) are refreshed on a periodic basis before they expire.
We expect that this mechanism would be workable for our HPSS
interface.

We are currently evaluating both approaches.

Related SDSC Initiatives

Meta-computing, the use of a set of computers as an inte-
grated whole, is a major goal of current and near future SDSC
projects. Key components of this include security and a Single
Sign-On system.

Single Sign-On (SSO) is a system where users could authen-
ticate (log in) once and repeatedly access the multiple hosts of
the meta-computing environment. If or when the DCE/Kerberos
environment becomes ubiquitous, Single Sign-On will become a
realistic goal.

Data-intensive computing is a major research initiative of
SDSC, and we are using HPSS as a foundation for that develop-
ment. Our goal is to provide the software infrastructure to
support the immense datasets of biology, geophysics, and
astronomy, managing data through object-relational databases
integrated with archival storage systems. SDSC is leading a
number of major collaborative projects in this field, including
the Massive Data Analysis Project (MDAS) and Distributed
Object Computation Testbed (DOCT).

The Massive Data Analysis Project involves defining and
prototyping an architecture for accessing very large data
archives. The proposed architecture will support data-intensive
applications that manipulate very large data sets by building
upon object-relational database technology and archival storage
technology. We will develop interfaces to integrate these two
technologies. Another goal is to research the software infrastruc-
ture needed to replace the Unix file system paradigm with a data
analysis and Application Programming Interface (API) system
capable of accessing terabyte data sets.

The Distributed Object Computation Testbed will create an
environment for handling complex documents on geographi-
cally distributed data archives and computing platforms. A
persistent object representation based on the Legion computa-
tion environment will be used to integrate text search systems,
document handling systems, and intelligent agents that support
electronic submission of documents. The documents will be
stored on distributed databases systems that are integrated with
archival storage systems. Research activities include develop-
ment of a distributed scheduling system, and development of the
requirements for supporting electronic filing of documents.

Conclusion

Security is a key component of modern computing, particu-
larly as we move to more network-centric and meta-computing
systems. Two key technologies are emerging as important
components of this.

Today, the Secure Shell (SSH) can be used to easily and effi-
ciently provide secure authentication and privacy on a wide
variety of computer systems. It is a practical interim solution and
also a useful supplement to Kerberos and DCE security. This
author highly recommends SSH to the Cray community and
hopes to see it become widely deployed in the HPC and general
computing communities.

Kerberos/DCE is continuing development, and is becoming a
more practical solution. Kerberos 5 Beta 7 can now be config-
ured, compiled, and installed with few difficulties on many
workstations, and Cray Research now provides Kerberos 5 Beta
5 as part of its DCE 1.1 product. We expect that Kerberos/DCE
will become a widespread and important technology, especially

CUG 1996 Fall

 Proceedings

191

as Kerberos 5 moves into the final release stage (Version 5
Release 1.0), which is expected in the next few months.

References

[1] Perrine, Tom, Safely Connecting to the Internet, transcript of presentation at
NetExpo/Internet Business Conference and other meetings.

[2] Data Fellows Ltd. home page: http://www.europe.datafellows.com/

[3] SSH home page:

http://www.cs.hut.fi/ssh/

[4] Schroeder, Wayne,

SDSC’s Installation and Development of Kerberos

, Pro-
ceedings, Thirty-sixth Semiannual Cray User Group Meeting, Fairbanks,
Alaska (September 1995).
http://www.sdsc.edu/~schroede/kerberos_cug.html

Acknowledgments

This work was funded in part by National Science Foundation
Cooperative Agreement ASC-8902825.

All brand and product names are trademarks or registered
trademarks of their respective holders.

