

208

CUG 1996 Fall

 Proceedings

So Optimization Breaks Your Code

R.K. Owen

, National Energy Research Scientific Computing
Center, NERSC / MS 50C, One Cyclotron Road, Berkeley,CA
94720

ABSTRACT:

Many compiler options can have an adverse affect on a code. Mostnotably,
various levels of optimization can “break” a code, such that the program gives erroneous
results. One option is to compile for the lowest common denominator. The other option is to
identify which routines are adversely affected. The local utility, bchop performs a binary chop
between object files in two directories (./good and ./bad), compares the output and isolates
which object files are causing the differences in output. This helps isolate problems due to
changing compiler or preprocessor options. The number of runs performed is approximately
2*E*log2(N) where N is the number of object files and E is the number of object modules
causing errors. This utility, bchop, is similar to CRI's atchop for isolating multitasking prob-
lems.

Introduction

Usually the initial phases of code development rely heavily
on a debug-compile-fix scenario. It is not until after the code has
been debugged that thoughts of using compiler optimization
options surface. Far too often, optimization “breaks” the code
and the discovery process has to begin again. Re-compiling to
allow easy symbolic debugging requires optimization to be
turned off. Therefore, the hapless code developer is at a disad-
vantage in finding which parts of the program are adversely
affected by optimization.

In another scenario, the code is debugged, optimized, and
verified. Two or three years pass by, the system compiler is
upgraded several times as well as the operating system; or the
code is taken to a similar, but not quite identical system. Recom-
piling with full optimization now results in erroneous results
that are hard to trace down. One option is to recompile with opti-
mization turned off, but at a substantial performance penalty.

The ideal solution is to find which compilation units, as well
as the trouble spots within them, are adversely affected by
compiler optimization levels. In the absence of an ideal solution
bchop can at least find which compilation units are thus
affected. This method then favors modular programming such
that each and every subroutine or function is isolated into it's
own compilation unit.

Theory

What little theory there is in bchop is summarized by the
phrase “binary decomposition”[1] or sometimes refered to as
“interval halving”. The procedure is to group half of the compi-
lation units (or object files) into one set and the remaining

objects into another set. The first set will comprise object files
collected from the object files giving “bad” results and the
remainder will be collected from the object files giving “good”
results. In practice, the “bad” object files are those compiled
with optimization turned on and the “good” object files are
compiled with debugging options which usually inhibit optimi-
zation. The object files are compiled once only by the user and
placed into directories named ./bad and ./good respectively. The
“good” and “bad” object files are linked together, the binary is
then executed and the output is compared to an accepted “good”
output. If the output compares favorably then those object files
in the “bad” set are tagged as acceptable and are no longer
considered for further testing. On the other hand, if the output
shows a difference the set of “bad” object files is further divided
in half and the above procedure is repeated. Each object file
represents an endpoint in a binary tree, which takes O(logN)
steps to traverse.

Practice

The above algorithm describes a depth first search. For prac-
tical reasons bchop does a lateral search proceeding from the
root downwards. The object files are numbered and selected
into sets according to the least significant bits. The first level
corresponds to an odd/even split. The odd numbered set of
object files are tested, then the even numbered set is tested. If
one set is deemed acceptable the rest of the object files are
“reshuffled” (i.e. reordered and renumbered), and the procedure
is repeated with the reduced set. However, if both sets yield
incorrect results the collection of object files is split into fourths,
and each fourth is tested. If there is still no resolution the collec-

CUG 1996 Fall

 Proceedings

209

tion of object files is split into eighths, and so forth. See Figure
1 for a simple example of how the sets are selected.

When any of the sets contain only one element then bchop
goes into a one-by-one comparison mode where each object file
is tested individually. It will be shown later that one-by-one
testing is more efficient for small samples or when the ratio of
“bad” to “good” object files is large.

Figure 1:

A binary decomposition of 9 objects selected by the least
significant binary digits.

Number of Trials

The bchop utility can only be useful if the number of trials or
test runs is found to be smaller than the number of object files.
Otherwise, it would be more efficient to perform a one-by-one
testing, that is - substitute a single “bad” object file in, reload,
execute, compare output, and repeat for another object file. Each
object in the binary decomposition is a branch in a binary tree.
The number of trials is proportional to O(logN) steps to perform.
If it was known apriori that there was only one misbehaving
object file the number of trials would be less than or equal to
log2(N). Unfortunately, the number of errant object files is
usually not known apriori and can only be deduced after the
entire ensemble is tested. Therefore, bchop can not assume
knowledge that could speed up the discovery process. Figure 2
shows bchop testing each set and fine tuning the search. The top
bar in the figure indicates that bchop always performs a trial with
all the “good” object files as well as all the “bad” object files.
This verifies that bchop can discern the difference

1

. A collection
of object files are no longer tested if they produce correct results.
The number of trials will be exactly equal to 2log2(N), when N
is a power of 2. Generally, the number of trials is less and
depends what order the “bad” object files are in and when the
one-by-one comparison provision is invoked for sets that
become “too” finely divided.

When more than one errant object file exists, say E of them,
the number of trials can be shown to be less than or equal to

1

footnote_one_herebchop is quite flexible in allowing the user to include a cus-
tom script for output comparison. The output can be filtered to extract only the
relevant data, skipping date and time fields which by their very nature will vary
from run to run.

2Elog2(N). Refer to Figure 3 for an example of two “bad” object
files out of 16. Since both the errant object files lie in the same
half of the ordering at the second level of testing both tests indi-
cate incorrect results, thus requiring the sample to be more finely
divided and retested.

Figure 3:

A bchop binary decomposition where the X's represents
“bad” object files, see Figure 2 for details regarding the color
scheme. The two “bad” object files lie in the same half of the
ordering.

A more extensive test was performed with up to 140 object
files and up to three errors randomly scattered among them. The
test was repeated three times for each configuration. The results
are plotted in Figure 4. There is definitely good agreement with
the number of trials performed and the theoretical upper limit.
However, for small numbers of object files (generally less than
15) it is usually more efficient to perform a one-by-one compar-
ison test unless it is known before hand that the number of errant
object files is very small. The actual number of trials performed
is highly dependent on errant object file location in the ordered
list. If, for example, they all fell into the same sampling octant
then the number of trials performed would be comparable to a
task an eighth of the size. The larger the number of “bad” object
files, the more likely they will demonstrate clustering.

Figure 2: A bchop binary decomposition where X represents a
`bad” object file. Red represents tests with errant results, and
pink for tests with correct results. Further testing is no longer
performed on object files that give correct results.

210

CUG 1996 Fall

 Proceedings

Implementation Details

The code for bchop is written in “Standard C”[2] and has
compiled without incident on Crays, workstations (using the
GNU gcc compiler), and PC's running Linux. The program
primarily invokes the Standard C system() function call to
perform the various tasks of calling the loader, executing the
trial binary, and comparing output results. A portion of the
program performs the bookkeeping necessary for identifying
which object files were tested or not, and whether they passed or
failed. The bulk of the program, however, handles the tedious
task of pasting character strings together to create command
strings to be passed to the system() call. The bchop utility allows
for almost every aspect of the load, execution input/output, and

Figure 1: bchop results for 1,2, and 3 “bad” object files in a
large number of object files. The curved line represents the
number of trials needed to perform a one-by-one comparison
test. The upper limit for the number of trials is given by
2Elog2(N), where N is the total number of object files and E is
the number of “bad” object files. The straight lines represent
this upper limit given for E=3,2, and 1 from the top down
respectively.

comparison stages to be customized with command line options;
but assumes certain defaults indicative of a C code in a Unix
environment. The source code for bchop is freely available from
ftp://ftp.kudonet.com/pub/vip/rkowen/ and follows the same
general copyright as the GNU software. The author is continuing
to improve the bchop utility and invites any suggestions (and
welcomes any code improvements) to be sent to
rk@owen.sj.ca.us.

Conclusion

The bchop utility is a simple, but effective tool for isolating
which compilation unit may be adversely affected by changes in
compiler options, system environment, compiler changes, etc.
The original task that prompted the creation of this utility was a
Fortran program with 117 compilation units that had success-
fully compiled and ran at another supercomputer center earlier in
the program's development cycle, but was now giving erroneous
results. Cray's atchop[3,4] utility was investigated as a tool to
diagnose the problem, but it quickly became apparent that 1) it
required recompilation of the entire code for each test, 2) was
specific to isolating multitasking problems only, and 3) proved
difficult to use. It was found that two subroutines after 23 trials
(and approximately two Cray C90 CPU hours) were adversely
affected by optimization. However, one of the routines identified
gave incorrect results in a part of the output that was not consid-
ered or even looked at by the user. Approximately three days
was spent in developing and debugging this utility (amongst the
author's various other duties) to a point where it identified the
user's problem routines. It has been successfully used several
times since then by the author and others to track down problems
resulting from compiler upgrades.

Bibliography

1. G.H. Gonnet, R. Baeza-Yates, “Handbook of Algorithms and Data Structures:
in Pascal and C, 2nd Edition”, Addison-Wesley Publishing Co., 1991.

2. P.J. Plauger, Jim Brodie, “Standard C: Programmer's Quick Reference”, Mi-
crosoft Press, 1989.

3. UNICOS Performance Utilities Reference Manual, SR-2040 8.0, Cray Re-
search, Inc.

4. UNICOS 8.0 atchop man page, Cray Research, Inc.

