

CUG 1996 Fall

 Proceedings

231

Building a J90 Cluster

Nicholas P. Cardo

, Sterling Software, Inc., Numerical Aerody-
namic Simulation Facility, NASA Ames Research Center, M/S
258-6, Moffett Field, CA 94035-1000 USA

ABSTRACT:

J90 systems have the potential to provide cost-effective computing. By
harnessing the processing power of several J90 systems with a parallel application, a poten-
tial for greater processing power can be achieved with one application. The Numerical Aero-
dynamic Simulation (NAS) Facility at NASA Ames Research Center has installed four J90
systems in order to construct a J90 cluster. The Portable Batch System (PBS), has been
installed to harness the processing potential of all four systems in the cluster. This paper
discusses the hardware and software configurations of the cluster as well as its operational
aspects and capabilities.

P

arallel processing has demonstrated its potential for achiev-
ing high performance for certain applications. However, not all
applications can be parallelized and an efficient and cost-effec-
tive means of processing conventional vector/scalar applica-
tions along with parallel applications is needed. Configuring
multiple cost-effective systems in a cluster can potentially pro-
vide a mechanism for processing both conventional and parallel
applications.

1 The Newton Project

The Newton Project was conceived to provide a produc-
tion-quality resource to NAS users that supports a transitional
path from current High Speed Processing methodology into an
increasingly parallel scientific computing paradigm. The
Newton Project was initiated to provide a platform for the
development of parallel algorithms and methods that will have
an impact on critical NAS/NASA projects.

In the first phase of the Newton Project, proposals were
requested that would help delineate the transitional pathways to
parallel processing from conventional High Speed Processing.
Application development projects accepted for Newton are
required to have real world applicability and relevance to
industry and/or the scientific community.

The overall project goal is to successfully transition work-
horse C90 sequential Computational Fluid Dynamics applica-
tion codes to operate in a parallel environment at a price
performance level better than that available in the workstation
market.

2 Cluster Hardware Configuration

The NAS J90 cluster consists of four J90 systems. Table 1
shows the configuration of each of the 4 nodes within the
Cluster.

Node 1 has been given more processors and disk space in
order to serve as the “master” node in the cluster. As the
“master” node, it will have the responsibility of interactive use
as well as remotely serving the filesystems to the batch-only
nodes. To keep Node 1 from becoming overloaded, only four
processors are made available for batch processing. The
remaining four processors are set aside for compiling, interac-
tive usage, and performing network access to the disks. Nodes 2
through 4 are designated for batch processing only. Figure 1
shows the layout of the clusters connectivity. Each node is
connected through a HIPPI switch as well as over FDDI.

The primary node of the cluster has 72 GB of SCSI disk
connected across four data paths. Nodes 3 through 4 each have
36 GB of SCSI disk connected across two channels.

Table 1.

Node configuration

Node 1 Node 2 Node 3 Node 4

Disk 72 GB 36 GB 36 GB 36 GB

CPU’s 8 4 4 4

Memory 128 MW 128 MW 128 MW 128 MW

232

CUG 1996 Fall

 Proceedings

3 Cluster Software Configuration

One goal of a cluster is to control costs. The fact is, software
is expensive but necessary. Having the same software on all
nodes within a cluster increases the licensing costs. However,
every software package is not required on all nodes. Compilers
can be consolidated on a single node saving the licensing costs
on the batch processing nodes. However, extra steps are required
to still permit compiling but to control it so that it happens only
on a single node. Since node 1 contained 4 additional processors
and was to be used for interactive work, it made sense to place
all the compilers on node 1 and provide a batch queue to allow
compiling on node 1 only.

Not all packages can be configured this way. An example of
this is the Message Passing Toolkit (MPT). As a cluster, jobs can
be initiated on any node and can execute across multiple nodes.
Because of this, the components of MPT are required on all
nodes within the cluster.

4 Batch System

The Portable Batch System (PBS) was chosen for batch
processing on the cluster. Not only did this save the cost of
purchasing the Network Queueing Environment and its source
license, it provided a flexibility easily adapted to a cluster. PBS
is designed to operate in a distributed environment suitable for
cluster computing. One of the appealing features of PBS is the
ability for each site to develop their own batch scheduler.
Included with PBS are application frameworks and application
programming interfaces for TCL/TK and C. The flexibility
afforded in constructing a batch scheduler simplified the ability
to fully utilize the cluster without over-allocating its resources.

4.1 Batch Configuration

Four production queues were required for the cluster. Table 2
shows the memory and wallclock limits on the queues.

In addition to the four production queues, there exists one
system queue per node of the cluster for the purpose of running
system maintenance jobs.

Each queue within the cluster’s configuration is designed to
process specific types of batch jobs. The

debug

 queue is
designed to allow the customers to perform debugging opera-
tions on their jobs without having to wait for the backlog of

Node 1 Node 2

Node 4Node 3

HIPPI
Switch

To HIPPI
Network

FDDI

To
Local
Network

Spare
HIPPI

Figure 1: Cluster Layout

normal running jobs to complete. Steps have been take to
prevent resources from being allocated to more than one batch
job. Therefore, if the resources are not available, the debug job
will wait.

The

batch

 queue is designed to run single-tasked jobs. Jobs
in this queue are run only when there are no jobs queued or
running in the

debug

 or

mpass

 queues. If a job is running in
the

batch

 queue and other jobs appear in the

debug

 or

mpass

queues, the job will be checkpointed and will again wait until no
other jobs can be run. Essentially, jobs in this queue are run only
when the cluster is idle.

Parallel jobs are run out of the

mpass

 queue. Jobs in this
queue have access to 16 CPUs across 4 nodes in the cluster.
Parallel work is performed with MPI, PVM, HPF, and multi-
tasking.

Since the cluster’s configuration has compilers only on the
first node, batch compiles must also take place on the first node.
The

compile

 queue is designed to allow batch compiles to be
performed only on the first node in the cluster.

4.2 Allocating Processors for Batch Jobs

While MPI and HPF allow for the specification of individual
processors, PVM allows for the specification of hosts to use.
The requirements of the job for processors or whole nodes need
to be specified as resources for the job at the time of submis-
sion. To accomplish this, two job attributes are available. The

neednodes

 attributes allows for the specification of entire
nodes, whereas the

cpus

 attribute is used to indicate individual
processors. Customers can then inform the batch system
exactly how much of the cluster they will require, allowing for
the processors to be distributed without over-allocation.

compile

debug
batch
mpass

system1
system2
system3
system4

pending
(default)

Figure 2: Queue Configuration

Table 1.

Queue Limits

Queue Memory Walltime

compile 20 MW 30 minutes

debug 400 MW 15 minutes

mpass 400 MW 2 hours

batch 100 MW 2 hours

CUG 1996 Fall

 Proceedings

233

5 Parallel Processing

When constructing a cluster to perform parallel processing,
the types of parallel jobs to run must be considered. The NAS
J90 cluster has the requirement to run four types of parallel jobs:

• Message Passing Interface (MPI)

• High Performance Fortran (HPF)

• Parallel Virtual Machine (PVM)

• Multitasking

5.1 Message Passing Interface

MPI allocates processes for each parallel task. Therefore, it is
possible to run a 16-processor parallel job across the four nodes
within the cluster. In the cluster’s configuration, there are 16
processors for batch processing, 4 per node. Therefore, only 4
tasks would be allocated per node for a maximum of 16 tasks.

For a batch job, the customer would specify how many CPUs
are required. This is accomplished by

-lcpus=##

 where

##

 is
the number of CPUs requested. This can also be placed within
the batch script as a directive:

#PBS-lcpus=##

.
MPI uses a “machines” file to indicate where processes are to

be started. Each line of the machines file is an MPI process.
Therefore, if more than one MPI process were to be started on a
single host, the hostname must appear once for each MPI
process. The batch scheduler will automatically generate a
“machines” file for the batch job. The number of MPI processes
is set to the number of entries in the “machines” file.

This will change in an upcoming release of MPT. It will be
possible to use MPI with shared memory libraries which will
increase the performance of the job within a node. Additionally,
the evolution of this will allow for shared memory within a node
and traditional communications between nodes. This will mean
that MPI jobs will need to specify how many tasks within a node,
along with how many tasks overall.

5.2 High Performance Fortran

HPF works similarly to the traditional MPI. Jobs using HPF
allocate tasks on the processor level. Therefore a customer
would specify how many processors are required for the batch
job.

For a batch job, the customer would specify how many CPUs
are required. This is accomplished by

-lcpus=##

 where

##

 is
the number of CPUs requested. The batch scheduler will
generate a “machines” file for the batch job for the processors to
be used.

5.3 Parallel Virtual Machine

PVM’s unit of allocation is on the host level. Therefore, PVM
jobs must indicate the number of hosts on which the job will run.

For a batch job, the customer would specify how many nodes
they require. This is accomplished by

-lneednodes=##

where

##

 is the number of nodes requested.
PVM uses a “hosts” file which contains all the hostnames for

systems on which to start the

pvmd3

 daemon. The file contains
one entry per host on which it can run. The batch scheduler will

automatically generate a “hosts” file for the batch job with the
nodes to be used.

5.4 Multitasking

Multitasking is a form of parallelization. Although restricted
to a single node, the job can parallelize across all processors
within the node.

Multitasking jobs need to be given a single node. This is
accomplished by

-lneednodes=1

 to indicate that the job
requires a single node in the cluster. However, a multitasking job
may only run efficiently if fanned out across a subset of the total
processors. A new mechanism is being investigated that will
allow for the specification of the number of CPUs to multitask
across. The use of this new mechanism implies the entire job
must run on a single node. Any CPUs not allocated to the multi-
tasking job can be made available for other processing.

6 Networked File System

A consistent filesystem structure is needed across the cluster.
Common filesystems, such as home directories, need to be avail-
able on each node in the cluster. This can be accomplished with
NFS 2, NFS 3, or possibly DFS. DCE/DFS is discussed in detail
in a paper entitled, “DCE/DFS on a Cluster of J90s,” by Alan
Powers.

7 Issues

Several problems arose while configuring the cluster. These
problems ranged from administrative to operational.

7.1 Incorrect Process/Session Limits

MPI, HPF, and PVM use

remsh

 to spawn the necessary
tasks. The problem with this is that when processes are started
with

remsh

, they use the user’s interactive udb limits. This
causes several problems in a cluster configuration.

The first problem is that the limits set in the batch system are
not carried forward to remote tasks. The result is that all
spawned tasks will have the limits set by the udb rather than by
the batch system. Process and session limits such as CPU time,
memory, and accounting information are not set properly.

MPI, HPF, and PVM all use

remsh

 to spawn tasks which is
hard coded into the packages. One idea to resolve the limits
problem is to replace

remsh

 with a customized version which
would pass additional information and set appropriate limits and
fields for remote tasks. SPR 104572 requests the ability to
substitute

remsh

 with a replacement program.

7.2 Batch Limits

Parallel jobs can run across multiple nodes within a cluster.
However, no mechanism exists to pass session resource usage
information back to the host where the job initiated. Conse-
quently, the batch memory and CPU time limits for the job
cannot be enforced across nodes of the cluster.

7.3 Accounting

Remote tasks do not belong to the same session on each node
and are not tracked from the initiating session. Providing accu-

234

CUG 1996 Fall

 Proceedings

rate accounting information for a single parallel batch job is
difficult, therefore, a global session identifier is needed to be
allocated across all nodes of the cluster. Accounting records can
then be synchronized to provide a true summary of the job.

7.4 Monitoring

The NAS J90 cluster is configured with a single master node
and three slave nodes. Although there exists a concentrated
effort of monitoring on the master node of the cluster, the slave
nodes don’t receive the needed attention. Automated tools are
required to detect problems.

7.5 Checkpointing

Since HPF, MPI, and PVM use

remsh

 to spawn tasks, this
leaves pipes open. Checkpointing these jobs will fail with the
error EPIPE. A mechanism for checkpointing parallel jobs is
needed.

7.6 Inter-Node Latencies

Since parallel jobs will be distributed across nodes in the
cluster, the inter-node communication speeds are important.
Currently the system is using FDDI for inter-node message
passing. Tests have shown that performing message passing
over the HIPPI network will improve the performance.

7.7 Disk I/O Performance

The cluster currently uses a cost-effective SCSI disk and is
limited to the performance rates of SCSI disks. Periods of heavy
swapping will cause noticeable system delays. Additionally,
since there is no SSD to be used for caching, programs which do
large amounts of I/O perform poorly. Although memory could
be used as a cached device, this would reduce the amount avail-
able for normal processing.

8 Future Plans

Several upgrades are planned for the J90 cluster to improve
parallel job performance.

The first planned upgrade is to add a HIPPI RAID device to
a HIPPI switch. This device would then be shared, possibly with
the Shared File System (SFS), with all nodes of the cluster.

The second planned upgrade is to convert the nodes to
J90se’s with GigaRing. While the J90se’s will provide improved

HIPPI
SWITCH

RAID

FDDI

Figure 3: Upgrade #1

scalar performance, the GigaRing should drastically improve the
system’s I/O. An additional benefit to converting to the
GigaRing, is that cost-effective Fiber Channel disks become
available.

9 Summary

While the basic functionality of cluster computing exists, the
software to fully and effectively utilize a cluster is lacking.
Additionally, delays in hardware delivery affect the ability to
provide cost-effective computing. Rather than invest in
cost-effective peripherals, a much higher investment must be
made to utilize the cluster.

Although the hardware supports several communication
interconnects such as FDDI and HIPPI, the most flexible inter-
connect, the GigaRing, has been delayed. The GigaRing would
have offered improved inter-node communication performance
as well as the ability to obtain cost-effective peripherals.

Disk I/O performance is slow. However, the GigaRing would
have made high performance fiber channel disks available at an
affordable price.

Message passing libraries are evolving and improvements
can be seen with each new release. However, it seems that the
corporate focus has been on the T3E systems, causing advances
in cluster computing to be put on hold.

Even though the cluster environment is not perfect, parallel
work is being accomplished. Chart 1 shows the aggregate
MFLOPS per CPU for the cluster.

This graph represents the performance of user codes in terms
of MFLOPS. The data was obtained from HPM data and does
not reflect actual overall system performance. Using these
performance numbers as a baseline, it is possible to compute the
performance of the cluster in terms of GigaFlops. Using the
MFLOPS/CPU and extrapolating them to 20 CPUs, a measure-
ment of the cluster capability can be derived. Chart 2 shows the
GFLOP rating of user codes when extrapolated to 20 CPUs.

Timings from an MPI code running across increasing
numbers of processors shows that turnaround time is increased
when multiple nodes are required. Chart 3 shows the timings
obtained on the cluster.

FDDI

RAID

GigaRing

Figure 4: Upgrade #2

CUG 1996 Fall

 Proceedings

235

The chart contains two data lines. The first data line shows
the actual timings of the code. The second data line represents
the theoretical timings that could be obtained by doubling the
number of processors. For example, the theoretical number for 4

0

10

20

30

40

50

60

70

0 2 4 6 8 10

M
F

LO
P

S

Week

Aggregate MFLOPS/CPU
MFLOPS

Chart 1: MFLOPS/CPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10

G
F

LO
P

S

Week

Total Gigaflops
GFLOPS

Chart 2: Total Gigaflops

processors would be half the time for 2 processors. When going
from 4 to 8 processors, the turnaround time increases. This
shows the boundary of going from 1 to 2 nodes. While running
within a single node, the actual numbers follow closely to the
theoretical numbers.

The Numerical Aerodynamic Simulation Facility (NAS) at
NASA Ames Research Center is actively pursuing the futures of
parallel computing. United States sites are welcome to visit NAS
on the World Wide Web at

http://www.nas.nasa.gov

.
The parallel efforts at NAS can be found at

 http://love-
lace.nas.nasa.gov/Parallel/home.html.

The
Newton Project’s home page can be found at

http://love-
lace.nas.nasa.gov/Parallel/Newton/index.ht
ml.

The author can be reached at

cardo@nas.nasa.gov

.

10 Acknowledgments

Original text for Newton Project overview was written by
George Myers. The Charts for MFLOPS/CPU and Total Giga-
flops were originally produced by George Myers.

The Chart representing timings was produced from data
derived from the efforts of Thomas Faulkner.

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

S
ec

on
ds

Processors

MPI Program Timings
Elapsed TimeTheoretical Time

Chart 3: Timings

236

CUG 1996 Fall

 Proceedings

Building a J90 ClusterBuilding a J90 Cluster

Nicholas P. CardoNicholas P. Cardo
Sterling Software, IncSterling Software, Inc

NASA Ames Research CenterNASA Ames Research Center

Numerical Aerodynamic SimulationNumerical Aerodynamic Simulation
Moffett Field, CAMoffett Field, CA

cardo@nas.nasa.govcardo@nas.nasa.gov

http://www.nas.nasa.govhttp://www.nas.nasa.gov

The Newton ProjectThe Newton Project

The Newton Project was conceived to provide aThe Newton Project was conceived to provide a
production quality resource to NAS users that supportsproduction quality resource to NAS users that supports
a transitional path from current High Speed Processinga transitional path from current High Speed Processing
methodology into an increasingly parallel scientific methodology into an increasingly parallel scientific
computing paradigm. The Newton Project was initiatedcomputing paradigm. The Newton Project was initiated
to provide a platform for the development of parallelto provide a platform for the development of parallel
algorithms and methods that will have an impact on algorithms and methods that will have an impact on
critical NAS/NASA projects.critical NAS/NASA projects.

The Newton Project GoalThe Newton Project Goal

The overall project goal is to successfully transitionThe overall project goal is to successfully transition
workhorse C90 sequential Computational Fluidworkhorse C90 sequential Computational Fluid
Dynamics (CFD) application codes to operate in aDynamics (CFD) application codes to operate in a
parallel environment at a price performance level parallel environment at a price performance level
better than that available in the workstation market.better than that available in the workstation market.

Cluster HardwareCluster Hardware

Node 1Node 1 NodeNode 22 NodeNode 33 NodeNode 44

DiskDisk

CPU’sCPU’s

MemoryMemory

72gb72gb 36gb36gb 36gb36gb 36gb36gb

8*8* 44 44 44

128mw128mw 128mw128mw 128mw128mw 128mw128mw

* Only 4 available to the batch system* Only 4 available to the batch system

Software ConfigurationSoftware Configuration

■■ Portable Batch SystemPortable Batch System
■■ Message Passing ToolkitMessage Passing Toolkit

■■ Fortran Compiler (Node 1 only)Fortran Compiler (Node 1 only)

■■ Standard C Compiler (Node 1 only)Standard C Compiler (Node 1 only)

Batch Queue ConfigurationBatch Queue Configuration

debugdebug

batchbatch
mpassmpass

compilecompile

system1system1

system2system2

system3system3
system4system4

pendingpending
(default)(default)

CUG 1996 Fall

 Proceedings

237

Batch Queue LimitsBatch Queue Limits

MemoryMemory WalltimeWalltime

compilecompile

debugdebug

mpassmpass

20mw20mw 30 min30 min

400mw400mw 15 min15 min

400mw400mw 2 hours2 hours

QueueQueue

batchbatch 100mw100mw 2 hours2 hours

Parallel ProcessingParallel Processing

■■ Message Passing Interface (MPI)Message Passing Interface (MPI)
■■ High Performance Fortran (HPF)High Performance Fortran (HPF)

■■ Parallel Virtual Machine (PVM)Parallel Virtual Machine (PVM)

■■ MultitaskingMultitasking

HPFHPF

■■ Specify # cpus Specify # cpus ((-lcpus=##-lcpus=##))

■■ Maximum of 16 cpusMaximum of 16 cpus

■■ “machines” file generated by batch “machines” file generated by batch
schedulerscheduler

PVMPVM

■■ Specify # of nodes Specify # of nodes ((-lneednodes=##-lneednodes=##))
■■ “hosts” file a generated by batch “hosts” file a generated by batch

schedulerscheduler

MultitaskingMultitasking

■■ Specify 1 nodeSpecify 1 node ((-lneednodes=1-lneednodes=1))

■■ Future: Future: -lncpus=#-lncpus=#

MPIMPI

■■ Specify # cpus Specify # cpus ((-lcpus=##-lcpus=##))
■■ Maximum of 16 cpusMaximum of 16 cpus

■■ “machines” file generated by batch “machines” file generated by batch
schedulerscheduler

■■ Looking forward to shared memory Looking forward to shared memory
within node and tcp between nodeswithin node and tcp between nodes

238

CUG 1996 Fall

 Proceedings

Future PlansFuture Plans

■■ Add HIPPI attached RAIDAdd HIPPI attached RAID

■■ Upgrade to J90se with GigaRingUpgrade to J90se with GigaRing

IssuesIssues

■■ Incorrect process/session limitsIncorrect process/session limits
■■ Batch limits not enforcableBatch limits not enforcable

■■ Cluster wide accountingCluster wide accounting

■■ System monitoringSystem monitoring

■■ Parallel job checkpointingParallel job checkpointing

■■ Inter-Node latenciesInter-Node latencies

■■ Disk I/O performanceDisk I/O performance

■■ ??? GigaRing ?????? GigaRing ???

For More InformationFor More Information

http://www.nas.nasa.govhttp://www.nas.nasa.gov
http://lovelace.nas.nasa.gov/Parallel/home.htmlhttp://lovelace.nas.nasa.gov/Parallel/home.html
http://lovelace.nas.nasa.gov/Parallel/Newton/index.htmlhttp://lovelace.nas.nasa.gov/Parallel/Newton/index.html

NAS is on the web...NAS is on the web...

