

CUG 1995 Spring

Proceedings

11

FCRASH, Optimization of an Explicit FEA Based Crash
Simulation Code For The Cray C916/16-512

Daniel F. Anderson

and

 Alexander Akkerman,

Ford Motor Company,
Dearborn, MI and

 Dave Strenski,

Cray Research Inc., Dearborn, MI

ABSTRACT

:

 Starting out as a small research project within Ford Motor Company in 1987,

FCRASH

 has grown
into a fast and viable transient dynamic analysis finite element program for vehicle crash simulation. Most com-
mercially available finite element crash analysis packages evolved from an impact simulation code,

DYNA-3D

,
originally written at Lawrence Livermore National Laboratories.

FCRASH

, however, was written from scratch to
provide a more structured program capable of greater computational efficiency and ease of maintenance. Part
of

FCRASH

’s success was the result of a close collaboration between Ford Motor Company engineers and con-
sultants from Cray Research. Our paper will focus on this collaborative effort, and will discuss the combination
and trade-offs of vector and parallel optimization techniques that enable

FCRASH

 to be the fastest vehicle struc-
tures crash simulation program within Ford.

INTRODUCTION

FCRASH

 is an explicit finite element (

FEA

) analysis code that
consists of about a quarter of a million lines of code, roughly
90%

FORTRAN

 and 10%

C

, distributed among 1,400 subroutines
and functions.

FCRASH

 is one of the

FEA

 solvers used in con-
junction with a set of tools at Ford Motor Company that aid in
the design of vehicles and components for crash worthiness.
The code is now used in production within several divisions of
Ford, and is currently running on seven different platforms,
with the majority of the large vehicle models being run on the
CRAY-C916/16-512 systems located in the Engineering Com-
puting Center (

ECC

).

Most recent studies in optimizing large scale scientific and
engineering programs have focused on emerging massively par-
allel processing (

MPP

) technologies. However, traditional
shared memory vector supercomputers such as the CRAY-C90
still perform the majority of Computer Aided Engineering
(

CAE

) simulations at automotive engineering and manufactur-
ing companies such as Ford. It comes as no surprise that today’s
supercomputer user community expects highly efficient single
processor performance from a vector supercomputer. At Ford
we find our user community also demanding parallel imple-
mentations of their simulation runs even though they can only
expect modest throughput improvements on a busy 16 proces-
sor machine.

It has been common knowledge for some time that finite el-

ement simulation codes are rich in potential parallel constructs

1

.
Parallelism within a simulation code exists at several levels,

from the job or program level to the instruction level

2

. For a sin-
gle simulation run on a parallel vector computer parallelization
across the task or procedure level and parallelization at the in-
struction level (i.e. vectorization) provide the most important
paths to performance improvement.

Before describing the work done to optimize the

FCRASH

code it is useful to review the fundamentals of an explicit time
integration based finite element program.The purpose of the re-
view is to analyze the structure of the program on the
CRAY-C90, with the focus on optimization, many of the neces-
sary details are omitted.

Velocity and Acceleration central difference formulas

Equation of motion

Velocity and Position update formulas

Time Step

Internal Element Force

Where:

u

 = nodal displacement

f

int

, f

ext

 = internal and external forces

σ

 = element stress

B

 = shear displacement matrix

M

 = mass matrix

u̇
n 1 2⁄+ u

n 1+
u

n
–

∆t
-----------------------=

u̇̇
n u̇

n 1 2⁄+
u̇

n 1 2⁄–
–
∆t

---=

Mu̇̇ f f ext f int–==

u̇
n 1 2⁄+

u̇
n 1 2⁄– ∆t

n
M

1–
f ext

n
f int

n
–()+=

u
n 1+

u
n ∆t

n 1 2⁄+
u̇

n 1 2⁄+
+=

∆t
n ∆t

n 1 2⁄– ∆t
n 1 2⁄+

+() 2⁄=

f int B
Tσ Vd

Vc

∫=

12

CUG 1995 Spring

Proceedings

The main integration loop is summarized in the flowchart
outlined below. Calculation of the element forces provides the

greatest opportunity for both vectorization and parallelization in
the explicit

FEA

 formulation. Fortunately in a typical crash sim-
ulation the force calculations represent 60% of the computa-
tional effort. The element calculations are entirely independent
and thus inherently parallel. Element force calculations per-
formed on elements of the same type and material can be readily
vectorized and the fact that the majority of elements in a struc-
tural crash simulation typically consist of elastic-plastic shells,
makes vectorization a particularly useful optimization tool.

Because an explicit formulation does not require the forma-
tion of a global stiffness matrix, and the need for out of core so-
lutions, I/O operations represent only a very small percentage of
the over all simulation time. I/O is used only to store the state of
the model at regular intervals for post-processing purposes.
However, because of our goal for 30 minute job completion we
were forced to optimize this I/O performance as well.

It should be noted that contact-impact operations must be
performed in any crash simulation code, as shown in the flow
chart by “Calculate Contact Forces”. Although these operations
are performed in parallel in the current version of

FCRASH

 they
will not be discussed in detail in this paper. We will concentrate
on the vectorization and parallelization techniques used to
speed up the force calculations as well as mention some I/O im-
provements which were applied.

We will trace performance improvements starting with the
CRAY-YMP version in 1992 to the current
CRAY-C916/16-512 first released at the end of 1994. As the
code was being optimized, it is important to note that the devel-
opment of new code features continued. This compounded the
difficulty of the optimization task as these new features often re-
quired additional code restructuring to maintain computational
efficiency. Finally, optimization of the code had to be structured
in a manner which did not interfere with code portability.

FCRASH

 is routinely released across seven computer platforms.
During the early development stages full releases were pro-
duced every three months.

As shown in the following bar chart (see Figure 2), the per-
formance of

FCRASH

 initially running on the CRAY-YMP was
12.4 hours for a 100 milliseconds full frontal impact simulation
of a midsize car modeled with about 22,000 elements (see Fig-
ure 1). By the end of this effort this same model was executed
in under 20 minutes on a CRAY-C916/16-512, a total speedup
of 40 times in over a two year period.

Figure 1.

VECTORIZATION

The initial investigation into

FCRASH

 vectorization was per-
formed by the University of Michigan’s Advanced Computer
Architecture Laboratory. A program should be optimized for
single processor performance before it is parallelized. A high
level of single processor vectorization is also a must for effi-
cient utilization of the CRAY- C90 architecture. The Cray

FOR-

ADVANCE NODE POSITIONS

u
n 1+

u
n ∆t

n 1 2⁄+
u̇

n 1 2⁄+
+=

READ INPUT

t=0

CALCULATE SYSTEM ENERGY

IF OUTPUT
CYCLE

EXITIF END OF
ANALYSIS

OUTPUT
SYSTEM STATE

CALCULATE TIME STEP

CALCULATE INTERNAL ELEMENT FORCES

CALCULATE CONTACT FORCES

APPLY INTERNAL AND EXTERNAL CONSTRANTS

t = t+ ∆t

CALCULATE NODE VELOCITIES

CALCULATE NODE ACCELERATIONS

SUM INTERNAL ELEMENT FORCES

u̇̇
n 1+

M
1–

f ext
n 1+

f int
n 1+

–()=

f int
n 1+

f int
k

k 1=

num

∑=

CUG 1995 Spring Proceedings 13

TRAN optimization manual states that vectorization can yield
execution up to 10 times faster than scalar processing.

Figure 2.

The original version of FCRASH was written for a RISC work-
station, thus there was no attempt to vectorize the element cal-
culations. The typical code fragment took a single element and
passed it sequentially through several different subroutines,
each performing some part of the element force calculation on
only a single element (see Program Example 1).

Needless to say this yielded poor performance on a parallel
vector processor (PVP) machine, such as the CRAY-C90.

The first phase of optimization was to replace these single el-
ement calls with a call to the subroutine with the entire list of
elements to be processed (see Program Example 2). The list was
then strip-mined into groups of elements compatible with the
CRAY vector register length. The trade-off between vector
lengths and its effect on parallel execution will be discussed lat-
er.

Further optimization included standard techniques such as
subroutine inlining (both manually and automatically with the
inline compiler option), loop unrolling, loop reordering, rewrit-
ing of scalar loops and the use of CRAY library subroutines
where possible. Applying these techniques alone led to about
25% performance improvement.

0

5

10

15

3Q92 4Q92 1Q93 2Q93 3Q93 3Q94

YMP-1

12.4

6.2
5.4

3.8

0.5 0.3

E
xe

cu
tio

n
T

im
e

(h
ou

rs
)

C90-1 C90-1C90-1
C90-16 C90-16

REAL A(NUM_ELEMS), B(NUM_ELEMS), C(NUM_ELEMS)
DO I=1, NUM_ELEMS
 CALL SOLVE (A(I), B(I), C(I))
END DO
END

SUBROUTINE SOLVE(A, B, C)
REAL A, B, C

* SCALAR
 A = FUN1(B) + FUN2(C)
RETURN
END

Program Example 1

The next step was to analyze the overall performance of the
code. The performance monitoring tools available on the
CRAY-C90 system were indicating excessive amount of data
movement in relation to floating point calculations. By using

the tool perfview3, we were able to find the routines that were
most affected by this factor.

Typically an array of elements that needed to be solved was
passed through several subroutines, with each subroutine add-
ing only a small amount of additional computation, but loading
and storing several intermediate arrays (Program Example 3).

REAL A(NUM_ELEMS), B(NUM_ELEMS), C(NUM_ELEMS)
 CALL SOLVE (NUM_ELEMS, A, B, C)
END

SUBROUTINE SOLVE(NUM_ELEMS, A, B, C)
REAL A(NUM_ELEMS), B(NUM_ELEMS), C(NUM_ELEMS)

* VECTOR
DO I=1, NUM_ELEMS
 A(I) = FUN1(B(I)) + FUN2(C(I))
END DO
RETURN
END

Program Example 2

REAL A(NUM_ELEMS), B(NUM_ELEMS), C(NUM_ELEMS)
 CALL SUB1 (NUM_ELEMS, A, B)
 CALL SUB2 (NUM_ELEMS, B, C)
END

SUBROUTINE SUB1 (NUM_ELEMS, A, B)
REAL A(NUM_ELEMS), B(NUM_ELEMS)
DO I=1, NUM_ELEMS
 B(I) = FUN1(A(I))
END DO
END
SUBROUTINE SUB2 (NUM_ELEMS, B, C)
REAL B(NUM_ELEMS), C(NUM_ELEMS)
DO I=1, NUM_ELEMS
 C(I) = FUN2(B(I))
END DO
END

Program Example 3

REAL A(NUM_ELEMS), C(NUM_ELEMS)
 CALL SUB (NUM_ELEMS, A, C)
END

SUBROUTINE SUB (NUM_ELEMS, A, C)
REAL A(NUM_ELEMS), B, C(NUM_ELEMS)
DO I=1, NUM_ELEMS
 B = FUN1 (A(I))
 C(I) = FUN2 (B)
END DO
END

Program Example 4

14 CUG 1995 Spring Proceedings

After several intermediate calculations were combined in the
same do loop, temporary arrays were eliminated or replaced
with scalar variables (Program Example 4). Merging of the sub-
routines had a secondary effect of removing the subroutine call
overhead associated with the eliminated routines.

PARALLELIZATION

After the code had sufficient single processor performance
the next task was to parallelize the code to achieve our goal of
30 minute turnaround time. The first task of this effort was to
break up element force calculations to work on groups of ele-
ments to achieve the benefits of vectorization and provide the
basis for parallel execution by distributing groups of elements
to available processors. A parameter, MAXVL, was introduced to
control the number of elements to be distributed to processors
at a time (see Program Example 5).

While optimizing the element calculations, we studied the
effect of the group size (MAXVL) on the overall code perfor-
mance. An experiment was performed varying the MAXVL pa-
rameter from 128 and to 1024. As expected the single processor
performance improved as the vector length increased, with larg-
est improvement achieved when MAXVL approached even mul-
tiples of 128, the vector pipe length of the hardware. Looking at
only the even multiples of 128 vector lengths, the curve seem to
flatten out starting at a vector length of 512 (see Figure 3). Even
though the vector length of 512 improved the single processor
performance by 9.6% over the vector length of 256, the parallel
performance suffered by even larger margin due to decreasing
number of available groups of elements (chunks of work) to be
distributed to processors, leading to load balancing problems.
Given a 22,000 element model, each processor of a 16-proces-
sor system gets about 5 chunks of works with MAXVL set to 256,
or 2 chunks for MAXVL set to 512. By comparing the effects of
MAXVL on performance on a single processor and in parallel, we

settled on the vector length of 256 to maintain high degree of
vectorization and sufficient number of groups of elements
(chunks) to achieve reasonable load balancing in the parallel en-
vironment. Our plan is to revisit this in the future with larger
models and better load balancing techniques.

Figure 3.

Further efforts concentrated on achieving the maximum load
balancing while maintaining the vector performance. Some of
the techniques utilized in this effort were combining multiple
parallel regions (one for each type element) into a single region
covering all types of elements in the model and weighting the
cost of various types of elements in the distribution mechanism.

Another parallel optimization performed was the merging of
several independent blocks of code to be performed in parallel.
The idea was to reduce the amount of parallel region overhead
and get a better load balancing by dividing the number of pro-
cessors into a much larger body of work. At the end of every
time step several routines are called to advance the velocities,
angular velocities, and energy calculations. All these routines
which were being performed independently were merged into a
single parallel region with the work distributed to processors in
chunks of nodes, and all necessary calculations performed by
each processor for its chunks.

The largest effort went into parallelizing the contact algo-
rithm. The code was restructured to distribute both global and
local searches of the algorithm. Again, the main difficulty was
in achieving and maintaining a high degree of load balancing,
which we overcame by parallelizing the contact search algo-
rithm to work on chunks of nodes on a processor and develop-
ing a cost criteria to be used in the loop distribution algorithm.

I/O OPTIMIZATION

Output of data is a synchronization point in the program so
all processors must wait for completion of I/O before proceed-
ing with their work. Although overall cost of I/O in this code is
fairly small (about 3% of the execution time on a single proces-

REAL A(NUM_ELEMS), B(NUM_ELEMS), C(NUM_ELEMS)
PARAMETER (MAXVL=256)

* PARALLEL
DO N1=1,NUM_ELEMS,MAXVL
 N2 = MIN(N1+MAXVL-1, NUM_ELEMS)
 CALL SOLVE (N2-N1+1, A(N1), B(N1), C(N1))
END DO
END

SUBROUTINE SOLVE(LEN, A, B, C)
PARAMETER (MAXVL=256)
REAL A(MAXVL), B(MAXVL), C(MAXVL)

* VECTOR
DO I=1, LEN
 A(I) = FUN1(B(I)) + FUN2(C(I))
END DO
RETURN
END

Program Example 5

0 128 256 384 512 640 768 896 102
Vector length (MAXVL)

230

220

210

200

190

180

170

g
(

)

9.6%

CUG 1995 Spring Proceedings 15

sor), it greatly affected overall speedup during parallel execu-
tion. We were able to cut the cost of I/O in half by applying
standard I/O optimization techniques such as rewriting multiple
WRITE statements within explicit do loops into single WRITE

statements with implied do loops (see Program Example 6), and
combining multiple WRITE statements into one.

Analysis of the FCRASH output showed that substantial
amount of data was written for validation purposes during de-
velopment only and was not necessary in production environ-
ment. Eliminating unnecessary output further reduced the time
spent in I/O.

Binary I/O was also explored and used for some timing esti-
mates, but not implemented in the production code due to Cray
non-standard binary format and incompatibility with post-pro-
cessing software.

IDLE CPU HOLD TIME

While running our benchmark models, we studied the effects
of varying the length of time a processor holds on to an idle cpu
before releasing it, the MP_HOLDTIME parameter on the program
execution time. We were able to vary the execution time by as

much as 10% and currently exploring optimal use of this param-
eter in a production environment.

RESULTS AND FUTURE GOALS

At the end of this effort our performance goal was exceeded
by 33%. A number of larger models were also benchmarked
which achieved a speedup of 9.5 to 10 on the 16 processor
CRAY-C90 system. The code has also been executed on the
new CRAY-J90 and CRAY-T90 systems and showed excellent
performance. Future projects include the tuning of the PVP ver-
sion of FCRASH to take full advantage of the new Cray systems,
and to explore more creative ways to increase the program
speedup with multiple processors. To gain an even higher level
of performance for this program new types of architecture are
being explored, namely; the CRAY-T3D, the IBM-SP2, and the
Convex SPP. The code is currently being ported to the
CRAY-T3D architecture by members of the FCRASH group in
conjunction with researchers at the University of Michigan’s
Advanced Computer Architecture Laboratory and the Universi-
ty of Michigan Center for Parallel Computing.

REFERENCES

[1] C. H. Farhat and L. Crivelli, A General Approach to Nonlinear FE Compu-
tations on Shared Memory Multi-Processors, Rep. No. CU-CSSC-87-09,
University of Colorado, Boulder, CO, 1987.

[2] K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing.
McGraw-Hill, 1984.

[3] Cray Research Inc., UNICOS Performance Utilities Reference Manual,
SR-2040 7.0, May 1992.

[4] C. H. Farhat, E. Wilson, and G. Powell, Solutions of Finite Element Systems
on Concurrent Processing Computers, Engineering Computing, Vol 2, pp
157-165, 1987.

[5] J. G. Malone, Parallel Nonlinear Dynamic Finite Element Analysis of
Three-Dimensional Shell Structures, Computers & Structures, Vol. 35, No.
5, pp. 523-539, 1990.■

*ORIGINAL CODE
DO I=1, NUM_NODES
 WRITE (unit,10) X(I), Y(I), Z(I)
END DO

*CHANGED CODE
WRITE (unit,10) (X(I),Y(I),Z(I),I=1,NUM_NODES)

Program Example 6

CUG 1995 Spring Proceedings 16

