
 

120 

 

 

 

CUG 1995 Spring 

 

 Proceedings

 

DMF, MLS and an NFS-Based Station MSP

 

Margaret S. Douglas

 

 and 

 

Michael L. Green

 

, Naval Surface
Warfare Center, Dahlgren Division, Dahlgren, Virginia

 

ABSTRACT: 

 

At  the Naval Surface Warfare Center, Dahlgren Division (NSWCDD), disk space
problems are not caused by huge files, but rather by the number of files and the size of the DD60
allocation unit.  We have implemented archiving using DMF and an NFS-based station MSP,
with archived files residing on disks on a Silicon Graphics Power Challenge R4000. This paper
presents an overview of the design of the NFS file systems and station MSP functions, problems
encountered using DMF, and the solutions to those problems.  This work was done at UNICOS
6.1.6 running MLS (with levels!) and has been converted to UNICOS 8.0.2.3 (PRIV_TFM and
PALs), DMF 2.1.

 

Background

 

When assembling the RFP for our current Scientific and
Engineering Computing Systems at NSWC-DD, we knew from
our previous 20 years experience on Control Data systems that
we would need the ability to archive user files.  We used this
data to formulate the following requirements for what we
termed a Fixed Archival System (FAS):

• retrieval of archived files must be transparent to users

• capacity of 55 Gbytes (expandable to 200 Gbytes)

• ability to perform 400 accesses/hour (expandable to 800)

• maximum retrieval time (time from user request to avail-
ability of data) = data transfer time (at an effective rate of
1.25 MBytes/second) + maximum FAS access time of 15
seconds (e.g., for a tape based archival system, the time to
locate and mount the tape, and position the tape at the
desired file).

• the security of files must be maintained

After a couple of false starts (a MASSTOR system that still
didn't exist at the time the contract was let and an optical disk
jukebox that failed to meet the retrieval time requirement when
actually put to the test) an SGI Power Challenge R4000
(Crimson), with 100 Gbytes of available disk storage (expand-
able to 200 GBytes) was proposed.

Our CRI system is a Y-MP2E/116 with 16 DD60s and 8
RD62s.  A little more than half of the DD60 space is devoted to
two DMF-managed user file systems, about 500,000 files.
Having upgraded from UNICOS 6.1.6  last December, we are
currently running UNICOS 8.0.2.3 with MLS enabled
(PRIV_TFM and PALs), DMF 2.1.  Our users actively use both
the security level and access control list (acl) features of MLS.

The network between the Cray and the FAS consists of two
NSC DX routers each having a PB130 Host interface for the
Cray, a PCDAS-1 Dual Attach FDDI interface for the FAS and
a PCET5-4 network interface providing four IEEE
802.3/Ethernet connections.  The Cray has two low-speed chan-
nels, each connected to a NSC router. The FAS has a FDDIX-
press Dual Attach FDDI interface connected between the two
NSC routers. User access to the Cray is through Ethernet
connections with the NSC routers.

Knowing that archiving would not be necessary immedi-
ately, there was time to study our file size distribution as users
migrated their projects to a UNIX environment.  While our file
distribution had always been dominated by smaller files, this
became even more pronounced as individual source code and
object modules became separate files.

Unlike many Cray disks which have an allocation unit (AU)
of one 4K block, the allocation unit of the DD60 is four 4K
blocks.  We find it simpler to consider file sizes in terms of
DD60 AUs than in multiples  of  4K blocks.   Using  a  size  unit
of the DD60 AU, our current file distribution is shown in
Figure 1. Fewer than one percent of our files are one MByte (61
AU) and larger; these account for fifty percent of our space.
Eighty percent of our files occupy one AU; these account for
twenty percent of our space.  In Figure 1, the distribution of one
AU files is divided into "quarter AU" (4K) units to demonstrate
how much of the space allocated to these files is actually
unused. If our allocation unit were 4K, two-thirds of the space
currently used by our small files would be available—this is
roughly the space on an entire DD60!



 

CUG 1995 Spring 

 

 Proceedings

 

  

 

121

 

Figure 1

Approach

 

Our approach to the task of archiving was to determine a
theory of operations (when to archive and what to archive), then
configure the FAS, and use Cray's DMF, tailoring the generic
station MSP to meet our needs for a reliable, responsive, and
secure archival system.

 

When to archive

 

Having read SPRs and "discussions" on the unicos-l mailing
list, we learned that it is not feasible to wait until we need the
space to archive.  We planned to archive a sufficient amount on
weekends, when our system is rarely busy, and, ensuring that
newly archived files have been backed up, free space daily as
necessary.

 

What to archive

 

While it might seem that giving precedence in archiving to
larger files would be more effective, that is not the case at our
site.  Given our preponderance of small files, archiving prima-
rily large files would simply result in disks full of small files.  In
time, it would be necessary to archive them also.  Archiving
only small files is a particularly slow process; it is more effi-
cient to archive files of all sizes at the same time.  We also

choose to archive small files because we are aware of how much
space they "waste" due to the size of the DD60 AU.  We use the
default DMF weighting matrix, i.e., files are archived based
solely on time of last access.

 

FAS configuration

 

In configuring the FAS, there were two major decisions to be
made:

• operating system IRIX or Trusted IRIX (TIRIX)

• file system design.

The choice of operating system was an easy one.  When the
FAS was installed (Spring 1993), it was determined that there
was a compatibility problem with the FDDIXpress software and
TIRIX 4.0.4, the version available at that time. Transfer rates on
the network were unacceptable, and the next release of TIRIX
wasn't expected for at least eight months.  Since TIRIX and
UNICOS have implemented network security in different
manners, there was no compelling reason to wait for the new
version of TIRIX--the decision was made to use IRIX (4.0.5),
and maintain security through other mechanisms.

 

File system design

 

Of primary concern in designing the FAS file systems was
the ability to backup archived data.  We are required to maintain



 

122

 

  

 

CUG 1995 Spring 

 

 Proceedings

 

backups of all user files.  The UNICOS backup (dump) utility
dumps only the inodes of archived files; we "recycle" UNICOS
backup tapes every four weeks.  Once a file has been archived
for a month, it's data is no longer retrievable from (UNICOS)
tape.  It is, therefore, imperative that the FAS itself can be
backed up, and restored when necessary, in a timely manner.

The FAS is backed up to 8mm tape.  To backup 100 GBytes
would take 3 days; to restore it, even longer!  Clearly, it wasn't
feasible to have very large file systems, or to archive in a
manner that would necessitate backing up many file systems
every time.  Our decision was to size file systems such that a file
system could be backed up to a single 8mm tape (approximately
4.8 GBytes).  File systems were striped to enhance perfor-
mance.  It was also decided that, as long as it continued to be
feasible, in a weekly session we would archive to a single file
system (the one with the  most available space at the end of the
previous weeks session).  This way we have only to back up one
FAS file system after archiving.  (To avoid backing up file
systems simply to reflect changes caused by hard-deletes, we
maintain, for each file system, a record of all files hard-deleted.
This record is kept until the file system is backed up again, i.e.,
the next time it is archived to.)

 

MSP design

 

When this task began, two of us studied DMF in an attempt
to get a thorough understanding of how the process worked.  We
then gave our colleagues an overview in which we often
referred to a simple diagram showing how all the  "parts"
(dmdaemon, UNICOS kernel, MSP, etc.) worked together.  In
this diagram, the MSP and the FAS were connected by a light-
ning bolt labelled MAGIC.  We now had to define this "magic".

The most straightforward, high level, network protocol,
therefore the simplest to implement, is NFS, but there were
concerns about its speed. Considering, however, that the vast
majority of our files are very small, transfer time becomes less
significant.  We chose to use NFS for our MSP  transfer mech-
anism.  FAS file systems are exported to the Cray and utilities
were developed to provide the necessary MSP functionality:

"put":  copy file from the premigration directory to the FAS

"get":  copy file from the FAS to the unmigration directory

"delete":  remove a file from the FAS.

Knowing that having very large directories has a serious
adverse effect on file access time, we have attempted to mini-
mize FAS directory search time by distributing files into subdi-
rectories based on the Cray file's ownership. These "owner
subdirectories" are created in the FAS file systems as needed.

In order to copy files of different security levels to these
NFS-mounted, "foreign" file systems, a version of cp was made
"trusted" in the PRIV_TFM sense.  (We still use the
PRIV_TFM trust definition for this, but will change to PALs in
the future.)  Similarly, a trusted version of mkdir is used to
create the "owner subdirectories."  Security is maintained as
follows:

• "trusted cp" and "trusted mkdir" are inaccessible by users

• UNICOS maintains security for DMF-related file accesses

• the FAS is defined in the NAL as MAXLEVEL

• the directory on the Cray that holds the mount points for the
FAS file systems cannot be traversed by users

• "normal users" do not have login accounts on the FAS

• all archived files on the FAS are owned by root with 600
permissions.

• basic NFS security checks (e.g., file systems are exported
only to the Cray)

• the Cray and the FAS are on an isolated, secure network

The MSP generates Dataset Names (DSNs) of the form:

 

FAS.fs/owner/handle.checksum

 

where:

 

FAS.fs

 

 is the FAS file system being archived to 

 

owner

 

 is the owner (on the Cray) of the archived file

 

handle

 

 is the DMF handle for the file (netaddress.seqno)

 

checksum

 

 is the file's checksum (used to verify the file trans-
fer in both directions).

Use of the dmdaemon supplied file handle in the FAS file
basenames ensures uniqueness.

Given that our operational plan involves weekly archiving to
a single FAS file system, there had to be a way to stop the
process if insufficient space remained on the target file system.
The MSP utility which copies files to the FAS first determines
if there is sufficient space for the file.  If not, or if the file system
is inaccessible, a "lock file" is created and no further transfers
are attempted.  Some transfers, already in progress (we have the
default 8 streams running), may also fail.  A message indicating
the problem is issued to the operator.

Originally we did not plan to modify DMF source code
except in the generally accepted areas of the generic station
MSP, but problems (discussed below) required changes to
dmmctl.  Taking advantage of this "opportunity," we added a
check for the lock file created by the MSP: if the lock file is
detected, dmmctl terminates, issuing no further requests.

 

Daemon startup

 

When the system is booted, dmdaemon is not started until
the NFS mounts of the FAS file systems have been verified.  In
order to minimize failed retrieval requests, NQS queues are not
started until dmdaemon is running.  We accomplish these tasks
in /etc/rc.pst rather than using the "normal" sdaemon method.

 

Problems

 

Our initial operational attempt at archiving was in March
1994--we attempted to archive approximately 20000 files.  The
dmdaemon choked!  The daemon seemed to "think" that the
MSP was lost or "out of control" and would terminate and



 

CUG 1995 Spring 

 

 Proceedings

 

  

 

123

 

restart it, reissuing thousands of requests.  After several restarts,
the daemon would terminate itself.  (The MSP appeared to be
functioning properly.)

We solved this problem by, effectively, slowing down
dmmctl.  We modified dmmctl to issue 64 requests, then wait.
When final replies had been received for all but 8 of the 64
requests, 64 more were issued.  dmmctl terminates when final
replies have been received for all requests, or 600 seconds have
elapsed since the last reply.

The next weekend, armed with our new dmmctl, we again
attempted to archive a large number of files (we had succeeded
in archiving about 7000 the previous weekend).  This time we
were too successful.  The migration threshold had been reached,
but dmmctl continued. When the migration threshold had been
exceeded by 30000 blocks, we terminated dmmctl.

This problem was a side effect of the allocation unit of the
DD60.  dmmctl used a block size of 4096 bytes and the size
field from the file's inode to compute the number of blocks allo-

cated to the file.  Since DD60s are allocated in units of four
4096 byte blocks, this, generally, underestimated the space
used.  We modified dmmctl to use the blocks field from the
file's inode.  This approach is not entirely correct, either, since
the blocks value in the inode includes space allocated to acl's
(which remain disk resident), but the number of files with acl's
is small.

We've had few archiving problems since these changes.  We
had no difficulty porting our DMF mods from UNICOS 6.1.6 to
DMF 2.1.  Transitioning some of our operational procedures,
e.g., gathering information on hard deleted files, log mainte-
nance, etc., was not as simple, but no insurmountable problems
were encountered.

 

Summary

 

We feel that our MSP and FAS design, coupled with stan-
dard DMF maintenance procedures, provide an archiving
scheme that is maintainable, reliable, responsive, and secure.


