

132

CUG 1995 Spring

Proceedings

SDSC Enhancements to NSL UniTree

Wayne Schroeder,

San Diego Supercomputer Center,

San Diego, California

ABSTRACT:

 SDSC has developed enhancements to NSL UniTree 2.0 to improve reliability, re-
coverability, and functionality and is now running it as our production archival storage system.
These enhancements include the integration of a new NameServer (1.8, from Livermore Comput-
ing), the development of a transaction journaling system (a library, NameServer transaction log-
ging, and NameServer database reconstruction utility), the extension of a DataTree to UniTree
index conversion utility, and the integration and enhancement of a passwordless FTP user inter-
face system. This paper will describe these developments and our conversion from DataTree to
UniTree.

Introduction

SDSC has been very actively involved in archival storage
systems since the creation of the center in 1985. An SDSC
spin-off, DISCOS, a division of our parent company General
Atomics, marketed the Los Alamos National Laboratory
archival storage system Central File System (CFS) as
“DataTree” and later the archival storage system from the
Lawrence Livermore National Laboratory as “UniTree”. The
rights to UniTree were sold to OpenVision Technologies about
two years ago and has recently (late 1994) been resold to
UniTree Incorporated, a consortium of five companies, four of
which are European.

We have been interested in running the National Storage Lab
(NSL) version of UniTree for several years now. Until recently
though, we felt that due to the experimental nature of NSL and
its rapid development, it was not stable or reliable enough for
our environment.

A little more than a year ago, we decided that using NSL 2.0
with SDSC extensions and integrating a new NameServer
would meet our current needs and mesh well with our future
plans.

The core development team was lead by Joe Lopez and
consisted of four people. The team members were drawn from
other groups and had additional responsibilities on other
projects. Larry Diegel selected and integrated the hardware,
developed the journaling library, and installed and enhanced the
user interface software (uftp retry logic and local uftp inhibition
under operator control). Tom Sherwin installed and enhanced
NSL UniTree, helped integrate the NameServer, fixed various
UniTree and AIX problems, enhanced the DataTree to UniTree
index conversion software, helped with uftp inhibit, and devel-
oped the tape positioning extensions. This author developed
new communication software to help integrate the new
NameServer, added journaling calls to the NameServer, and
developed the reconstruction, UniTree backup systems and
intradatabase capability comparison software. Antoinette Long

fixed various UniTree problems and assisted with AIX and
UniTree troubleshooting. For a few months a student intern,
Sharon Fenner, assisted with various tasks. George Kremenek
assisted for a few weeks by implementing exit statuses in uftp
and the single execute line extensions.

SDSC’s migration to NSL UniTree from DataTree benefits
our user community in a number of ways. These include:

Perform

ance

UniTree can store and retrieve files at many times the speed
of our DataTree system. Future hardware upgrades (avail-
able for UniTree and not DataTree) will improve perfor-
mance even more, perhaps an order of magnitude
(HIPPI-attached peripherals). Support for third-party file
transfers will allow us to achieve much higher transfer rates
to archival storage.

Reliability

The new UniTree RS6000 host platform, RAID disk, STK
4490 tape systems, and UniTree software (especially with
local SDSC enhancements) should be an extremely reliable
data archive. Our DataTree hardware was reaching
end-of-life; several disk head crashes have occurred during
the last couple of years.

Unix

The interface to UniTree is standard FTP (with extensions)
with UNIX-like commands. This interface is much easier
for our new users to learn than was DataTree. Also the Uni-
Tree Server UNIX system is easier and less expensive for
SDSC to operate.

Commonality

UniTree is becoming a widely used standard at many super-
computing centers. This standard interface to archival sys-
tems will improve ease-of-use and collaboration with other
centers.

CUG 1995 Spring

Proceedings

133

Future growth

Perhaps most importantly, UniTree allows us to make some
exciting and valuable future expansions in the size and
functionality of our archival system. High performance data
storage, access, and management is a major resource to our
user community. Additionally, the system architecture of
UniTree will allow us to produce new tools to access and
analyze data in interesting new ways.

 SDSC Enhancements

New NameServer Integration

A new NameServer was developed by Donna Mecozzi and
Jim Minton of the Lawrence Livermore National Laboratory in
1993 for their version of UniTree. The NameServer records and
manages user-defined names for files and directories. It
converts user names to UniTree identifiers (Capabilities), main-
tains directory attributes, and checks access permissions.

The former NameServer used a btree structure to manage the
user-defined name space, which was efficient in accessing
information, but required substantial data reorganization when
new information was added. It was felt that a new NameServer
could provide greater reliability.

The new NameServer was developed for Livermore’s
storage system (a parent version of UniTree) and communi-
cated via UDP Remote Procedure Calls (RPCs) as defined for
UniTree clients in

libunix

. NSL UniTree uses TCP RPCs as
defined in

libnsl

. It was felt that the cleanest way to integrate the
new NameServer into NSL UniTree would be to change it to
use TCP RPCs.

This required the development of a new set of communica-
tion routines for the NameServer which was essentially a blend
of the UDP RPC code from the new NameServer and NSL TCP
RPCs from the old. This involved an analysis of the arguments
passed at various levels and their use, and the development,
testing and debugging of the new blended code.

Since the lower-level routines in the new NameServer
checks permissions in a different way than the old NameServer,
we made changes to handle group permissions correctly. We
added logic in the new interface routines to retry with other
group ids from the list of groups the user belongs to, if a permis-
sions error occurs.

The new NameServer does not keep names in alphabetical
order like the old one did, so we added sorting logic. We did this
not in the NameServer, but in the utilities that produce lists for
users (utilities run for users for ‘ls’ and ‘dir’ commands).

Our version of the NameServer has both TCP RPC and UDP
RPC communications (the latter kept for system administration
tools). There were a number of problems that we resolved in the
underlying support routines to allow these to operate at the same
time.

Transaction Journaling

Transaction Journaling is an important feature of DataTree
that was lacking in UniTree. In DataTree, for every transaction
that causes an update to the directory

1

 a transaction record is

written that completely describes the action. If need be, these
transactions can be reapplied to a directory backup to recreate
its contents.

A backup of the directory is made periodically. If a hardware
or software problem causes the directory to become corrupted,
the backup image can be copied back in and the transactions
reapplied to bring the directory back into agreement with the
files stored on tape and disk.

A few times in our history, SDSC has used the transaction
journaling recovery feature of DataTree to eliminate or reduce
the number of files lost following a serious hardware or soft-
ware problem.

Our transaction journaling project divided into three
sub-projects: developing a Transaction Journaling Library,
using this library in the NameServer, and developing a recon-
struction utility.

We chose to journal NameServer transactions since some
sites had experienced problems in the old NameServer data-
base. Transaction journaling would have allowed them to
recover gracefully.

Transaction Journaling Library

We decided to make the transaction journaling library
generic so that it could be easily reused.

The transaction journaling library was developed with the
following goals and assumptions:

• The interface should be generic enough to be used any-
where within UniTree, in any server, and at any level.

• Multiple journals may be generated within a server. For
example, the merged tape/disk mover may generate a sep-
arate journal for the tape mover and the disk mover.

• Journal file names will include a server specified path and
file name including a date/time stamp of when the journal
was created: <dirpath>/<name>.<YYM-
MDD>_<hhmmss>_<TZ>

• In order to minimize the disk I/O overhead, each journal
entry is written as a multiple of 512 byte blocks. The
smallest journal entry requires 512 bytes to log.

• A journal entry is written in one write. Possible problems
occur when multiple writes have to be executed as one
atomic event. It’s much simpler and more foolproof to do
it all in one write.

• Since it will be common to journal various input and out-
put arguments, the journal routine has an argument to
specify an array of

iovec

 structures pointing to multiple
source buffers. This is a speed optimization to prevent the
unnecessary copying of the data before calling the jour-
naler.

1. “Directory” refers to the information that describes the files stored in the ar-
chive: the names, locations, etc. This is also commonly called the “index” or
“meta-data.”

134

CUG 1995 Spring

Proceedings

The contents of the input and output arguments are totally
the responsibility of the server. The journaler simply records the
bytes as requested; it has no concept of their meaning, structure
or value. It is the responsibility of the UniTree server, not the
journaler, to include enough information during logging to
make sense of the journal entries when they are read back
during a database reconstruction.

The interrecord information is recorded by the journaling
library, including time stamp, record number, record size, etc.

Additional features are planned but are currently unimple-
mented. These include:

• The journaler should automatically break journals into rea-
sonable sized chunks to facilitate handling based on maxi-
mum size, number of transactions, and the age of the
journal. Instead, we restart the NameServer each night
during the UniTree directory backup and periodically

rcp

the current file to another host.

• UniTree asynchronous disk I/O and multiple journal entry
buffers will be used to reduce the impact of the journaler’s
disk I/O on UniTree. This disk I/O should avoid all system
caches. This may be a performance improvement in the
future, but for now synchronous I/O seems adequate.

• A second journal area will be specified for use in case the
primary area fills up.

Using the Transaction Journaling Library in the NameServer

We added calls from the NameServer to the transaction jour-
naling library to record information for every successful TCP
RPC call that updates the NameServer directory. This includes
FuncChange (change entry attributes), FuncSymLink (create a
symbolic link), FuncInsert (insert a file or directory into a direc-
tory), FuncReplace (replace a directory), FuncDelete (delete an
entry), FuncMkdir (make directory), FuncMvdir (move direc-
tory), FuncDTInsert (insert a DataTree file, SDSC extension).
The information recorded includes the various common input
arguments, function-specific input arguments, and results. Six
to eight separate values are recorded via the I /O vector. Each of
these fits in the basic 512 byte transaction record.

These calls were added in the TCP RPC communication
routines. Although the UDP RPCs may also update the data-
base, they are only used by UniTree administrators and so can
be reproduced by hand.

The RPC result structure is recorded since it includes the
created capabilities which are needed for reconstruction.

Reconstruction Utility

The reconstruction utility applies journal entries to a
NameServer directory. Using a backup of the NameServer
directory, we can apply journaled transactions and recreate the
directory.

It uses most of the NameServer routines to handle reading,
writing and caching the directory, and processing function calls.
But instead of registering for RPC communications, it reads
transactions from a set of transaction journal files and (re)calls
the underlying NameServer routines to perform the function.

There are options to list various attributes of the transactions
and/or perform the actions, and/or process only a portion of the
transaction journal file.

A difficulty exists because each time a Capability is created,
it is unique (using timestamps as part of the seed). This means
that as we reapply functions that create Capabilities, the new
Capabilities will not be the same as the ones created last time.
Since many functions supply a Capability to identify an object
to operate on, a subsequent function on a Capability created via
the journal would fail as it would not be found.

To solve this problem, the reconstruction utility keeps a table
of old and new Capabilities. For make_dir, for example, the
journal records the Capability created when this function was
first performed. The reconstruction utility keeps track of the
Capability created the first time and the one created this time.
For subsequent transactions, the old Capability is replaced with
the new before the NameServer function is performed. Thus a
make_dir, followed by a change (e.g. change group), will
operate on the correct object.

We have tested this fairly extensively and believe it is oper-
ating correctly. We have reproduced a NameServer directory
from backup and about a day’s worth of journals and it
compares correctly. To do this, we wrote a compare utility that
could ignore irrelevant fields (such as timestamps). We have
not, however, had to use the reconstruction utility to correct the
Directory (fortunately).

UniTree Backup

We take UniTree down nightly to create a full backup. This
is done by a root cron job.

The backup script first checks that UniTree is running
normally. If not, the backup is skipped for the night. It then
installs a banner file that is checked by our uftpd routines, which
displays a notice and prevents new ftp sessions from starting.
The uftp script (on the CRAY for example), for batch
command-line invocation, will periodically retry in this situa-
tion. The backup script then waits for the running UniTree
sessions (uftpd) to complete, giving them up to 15 minutes,
after which it kills them. This effectively quiesces UniTree. It
then runs ‘backup’ to cause the TapeServer to backup its Direc-
tory to tape, and copies the NameServer Directory to a file.
After the TapeServer backup completes (usually 30 to 45
minutes), it removes the banner file to allow UniTree access to
resume.

It then stores the copy of the NameServer directory into
UniTree, creates a listing of this UniTree directory (a new direc-
tory for each month), and sends electronic mail to the adminis-
trator. This listing is created with an added option that lists file
names with their Capabilities as hex strings (Capabilities are 4
64-bit words long). As long as the TapeServer Directory is
intact, we can retrieve these files via their Capability, with little
else of UniTree running. To our knowledge, the TapeServer has
been very reliable.

Once a week, we also backup the LocationServer directory
and the TapeServer headers into UniTree. The LocationServer

CUG 1995 Spring

Proceedings

135

directory is less critical since if it is somewhat out-of-sync it
will be corrected during normal operations (when people access
files). The TapeServer headers are stored in case we wish to
analyze the information over a long period. The normal Tape-
Server backups are saved round-robin within a set of tapes and
so do not extend far into the past.

NameServer journal files are also stored into UniTree. A
new journal file is created each time the NameServer restarts
(we restart it during backup so this is normally at least once a
day). A cron job runs every few minutes and if there is more
than one journal file, it stores the previous one into UniTree,
moves it temporarily to another directory and electronically
mails the Capability off-system.

We also have a cron job that periodically

rcp

’s the current
journal file to another system (the CRAY). This way, even with
a bad disk problem, we should have a journal that is nearly up
to date.

DataTree to UniTree Index Conversion

The conversion tools, initially created by NCSA and
rewritten by SDSC, convert a DataTree database into a form
that can be inserted into the UniTree database. SDSC rewrote
the routines to deal with our (more current) version of DataTree
(multivolume files, mixed case names, file sizes in bytes, etc.)
and with NSL UniTree (communicating via

libnsl

), adding
logging, restartability, more error checking, configurability,
and the ability to access all fields in the DataTree structure.

There are several sections of the conversion tools: the direc-
tory parser (dtparse), the directory/file creator (dtcreate), and
special library and server codes to allow DataTree files to be
processed inside of UniTree.

DTParse is the main decision maker of the conversion
process. This program reads the DataTree file database and
converts the information into a file usable by the

dtcreate

program. DTParse is responsible for determining who owns a
given DataTree file, determining the location in the UniTree file
database where the file belongs, and flagging any peculiar
entries that may need more attention. Files may need more
attention when they have Access Control Lists (ACL’s) or when
passwords have been assigned, or when the user does not exist
in the input password file. Once DTParse has completed, the
output file can be fed into the DTCreate tool to have the entries
actually created.

DTCreate reads the output generated with the DTParse tool
and sends requests to the TapeServer and the NameServer to
create files and directories.

Modifications were made to the TapeServer to create a back
door for the DataTree file information to be sent directly into
the UniTree tape server. Modifications were also done to enable
UniTree to read the DataTree tape formats.

We ran the conversion over the Thanksgiving holiday, over
a period of six days. During this time both DataTree and
UniTree were unavailable to users. Users were prepared for this
period and kept the CRAY and Intel supercomputers fairly well
utilized with less data-intensive applications.

Passwordless FTP

We chose ‘dftp’, from DISCOS/Livermore, as a basis for a
high-performance, reliable and secure interface. FTP provides
higher-performance and greater reliability than NFS access to
UniTree. ‘dftp’ has a passwordless interface which improves
security by allowing users to access UniTree from trusted hosts
without putting passwords into scripts or .netrc files. We made
a series of extensions to ‘dftp’ and installed it as ‘uftp.exe’
(unitree ftp).

One extension allows users to stack commands on the
execute line, to provide a single command line interface.
Commands that are separated by commas on the execute line
are executed in sequence. When all are completed, uftp exits.
‘uftp’ with no execute command line goes into interactive
mode.

We also made changes such that the exit status from uftp
returns success or failure and the type of failure. Thus with a
single execute line invocation, the user script can easily deter-
mine if a transfer completed successfully.

We added a ‘uftp’ script between the user and the uftp
program that users run to access uftp.exe. It checks the exit
status and for transitory errors on single execute-line invoca-
tions, will retry the operation periodically (less frequently as
time goes by).

uftp.exe and uftpd also check for banner files and if they
exist they are displayed and the script sleeps. Banner files are
used to hold off access during UniTree directory backups or
other periods of downtime, either locally (from one host), or
globally.

The script also checks for many environment variables that
control various options. These include the default server host
and port, verbose and debug mode, store and get unique (i.e.
create a new name if there is a name collision), hash size,
CRAY time-limit, etc.

To make UniTree somewhat more secure, we extended uftpd
to access different passwd files for connections from different
hosts. We maintain separate user/passwd lists for the CRAY,
Paragon, workstations, and Macintoshes. This restricts the set
of allowable user logins to those defined on each host and
restricts access to the defined hosts. User accounts are set up on
the various platforms and periodically installed on UniTree.

To speed up ‘dir’ commands, we implemented a password
caching system. Since we have a fairly large number of UniTree
users (7,200+), the searches through the passwd file for user
information can take a while (on the order of a second). When
users do long directory listings (dir commands), uftpd converts
each User ID to a name. So ‘dir’ commands on long directories,
especially for users near the end of the file, could take a long
time. To correct this, password information is cached. Since
most accesses are usually the same one over and over, we very
significantly improved the performance. This is done via a
shared-memory password file indexed by UID. The conversion
of group ids to group names is also done this way.

136

CUG 1995 Spring

Proceedings

We have also modified uftpd to record status information on
top of the argument information accessed by

ps

. This way, we
can easily determine the state of various uftpd sessions:

hal-6000> ps -ef | grep uftpd

[...] uftpd (u13431) Transfer (retrieve)
ok.

[...] uftpd (u9212) In retrvfile

[...] uftpd (kremenek) In store

Hardware Configuration

We are running NSL UniTree on a IBM RS/6000 Model 99J
with 512 MB of memory. To this we have attached approxi-
mately 150 GB of disk, and two STK 4791 Tape Controllers
(with ICRC Compression Firmware) which attach to two Stor-
ageTek Silos (each containing 6,000 tapes). The disk consists of
110 GB of RAID disk (five RAID-3 disk arrays) attached via 20
MB/s differential SCSI, and 41.8 GB of disk attached via
single-ended SCSI (10 MB/s). The 110 GB RAID is used as
UniTree disk cache and for UniTree Directories (UniTree
Servers maintain dual copies of the Directories and we keep one
on RAID). Each of the two STK silos contains four STK 4790
tape drives and handle the extended length 36 track 3490 tapes.
This gives us a capacity of about 1.6 GB per tape and about 9.6
TB per silo.

Our current archive consists of approximately 8 TB in 1.45
million files contained in 38,000 3480 DataTree tapes and 4,000
3490 UniTree tapes.

Current Status/Transition

As one would expect with a software system of this size and
with the changes we made, there were a number of small and
larger problems to deal with as we moved into production.
Some were remaining problems with our NameServer integra-
tion, some were NSL UniTree bugs, and some AIX problems.
We fixed most of these fairly quickly and over several months
created additional integrity checking software, making the
system more reliable.

Our most serious problem to date was a situation in which
tape access would abort (timeout) when we had many tapes
running. IBM and StorageTek staff worked diligently and effec-
tively with us to resolve this problem. The main problem was
that tape reads were taking a long time due to the controller
having to decompress data as it was searching for a tape mark
for a particular file. Although the controller is multiplexed, the
decompression is a compute-intensive task and only one read or
write can occur at the same time. ‘Locate’ functions can occur
simultaneously on each drive.

The immediate work around was to add a second controller
and increase the timeout values. We then modified UniTree so
that we can ‘locate’ to a tape position before forwarding to a
tape mark. This does not require data decompression, multi-
plexes very well, and very significantly speeds up our tape
access.

We also wrote additional software to compare the file Capa-
bilities known to the NameServer, DiskServer, and TapeServer.
This included commands to produce text lists of the Capabili-
ties, and a simple database utility to efficiently add and remove
these text strings to an internal database so that we could
compare 1.4+ million entries. It hashes the beginning of the
Capabilities and builds a link list. Using this software, we
discovered additional files that were known to the NameServer
but were not present in the Disk or Tape Server databases.
These appear to have occurred in our early production period
during initial instability.

 Future

Reliable, high performance archival storage is a key compo-
nent of SDSC’s future. As always, there is a great need to store
and retrieve massive amounts of data from the simulations
running on supercomputers such as the CRAY and Intel
Paragon.

There are also new efforts under way to provide database
access to archival storage information, to access information via
queries instead of file and path names, to access portions of
files, and in other ways improve the data and information
management systems available to the scientist.

With NSL UniTree, we expect to be able to continue to
improve performance and reliability and collaborate in the
development of some of these new tools.

We are in the process of ‘kerberizing’ UniTree as part of a
general Kerberos project at SDSC. Using the MIT Kerberos 5
Beta 3 release we plan to Kerberize our CRAY, Paragon, work-
station, Macintosh and archival storage environments.

We hope to be able to acquire HIPPI-attached RAID disk
this year and, by using this key feature of NSL UniTree, greatly
increase the host to storage system transfer rate. We may need
to restrict its use in some way, though, as it vastly improves the
CRAY to/from archive disk transfer speeds without corre-
spondingly increasing the archive disk to/from tape speeds.

For the longer term, we intend to migrate to HPSS, the High
Performance Storage System under development by Lawrence
Livermore National Laboratory, IBM Federal, National Energy
Research Supercomputer Center, Los Alamos National Labora-
tory, Oak Ridge National Laboratory, Sandia National Labora-
tory, and others. We will install a test version of HPSS at SDSC
and are collaborating on migration from UniTree to HPSS, and
the development of Database interfaces to HPSS.

Over the next few years, we hope to provide distributed
TeraFlop supercomputing systems (via distributed systems with
other centers) and PetaByte archival storage systems to
researchers who are tackling critical grand-challenge problems
of national and global interest.

 Acknowledgments

This work was funded in part by National Science Founda-
tion Cooperative Agreement ASC-8902825.

137

CUG 1995 Spring

Proceedings

All brand and product names are trademarks or registered
trademarks of their respective holders.

