Automatic Operationson Y-MP and T3D Systems

Denis Lubin, Pascal Richard, and Elizabeth Charon, Centre
d’ Etudes de Limeil-Valenton, Commissariat a |’Energie
Atomique, Villeneuve-Saint-Georges, France

Abstract

The Cray Y-MPs and T3D running at CEL-V and CEV-M offer
8 24 hours a day, 7 days a week service. Due to shift work
changes, the systems need to be autonomous during nights and
week-ends. This paper describes how we manage the automatic
batch submission by a system using Fair Share Scheduler and
NQS 8.0 possibilities. We compare the autonomous functioning
with the former human control and present our ideas in general
for a fair and optimized job scheduling automation on Cray
computers.

Introduction

The CEA “Commissariat & I’Energie Atomique” is made
up of 12 research centers; in two of them, CEL-V and
CEV-M, located near Paris, hundreds of engineers work
on research in nuclear physics using numerical simulations
which require high-performance computers. Consequently,
these centers host 4 powerful Cray machines :

e 3 “PVP”:2 Y-MP 8/128 and 1 Y-MP 41/128,

e 1 “MPP”: a 64 nodes T3D with 128 processors and 8
Mwords/processor.

1 Requirements

Our CRAY computers provide a non-stop service. Their
power is shared between different “departments” on a
“CPU quota” base. The operating mode is different during
prime-time (working days) and during nights and week-
ends.

1.1 During working hours

During working hours, the CRAY's are available for inter-
active and batch work, but only for short runs (up to 10
CPU minutes), in order to offer the sharing of the machine
between a large number of users.

Batch mode is mainly used to prepare and test the jobs
which will be executed during nights and week-ends.

Prime time needs are basic: a good response time for
interactive sessions, a good throughput for batch jobs and
a fair repartition of the resources between users.

226 CUG 1995 Spring Proceedings

1.2 During night and week-end

Nights and week-ends are devoted to jobs which require
important CPU and memory. Jobs are executed according
to the following rules:

¢ Intra-department scheduling

The users do not submit their jobs by their own. Each
department provides us with an ordered list of jobs to
submit.

¢ Departments CPU quotas

The CPU quotas granted to departments determine
priority in the choice for the jobs to be executed.

o Restricted job dependency

Two jobs are said dependent if the second one must
wait for the completion of the first one before starting
execution. As job dependency is not controlled by
NQS, we traditionally assume in our centers that job
dependency exists between jobs of same job name and
same user name.

2 Former organization

Before 1995, the computer center was staffed 24 hours a
day by operators whose work was different during prime-
time (users working hours) and non prime-time (night and
week-ends).

2.1 Prime-time work

During the day, the operators supervise computing center
equipments and provide help to users.

2.2 Night and week-end work

During night and week-end, the operators submit jobs
mentioned on the departments lists through a specific in-
terface. They control the number of running jobs, pay at-
tention to job dependencies and consult home-made coun-
lers to select jobs of different departments.

The counters, as shown in figure 1, display the quotas
granted to departments, and the remaining time.

date 1 17/02/94 16:47:02

planning : 17/02/94 16:46:51 (12h period)

dep. 4 cpu/period daily veekly
used remain finis.rum. finished

dl (29) 00:00 23:24 03:32 00:00 031:10 (17)
d2 (24) 00:01 02:21 03:16 00:01 073:34 (42)
d3 (16) 00:00 11:00 00:00 00:00 001:56 (01)
d4 (15) 00:02 00:54 07:22 00:02 061:12 (35)
ds (04) 00:00 02:34 00:17 00:00 001:17 (00)
dé (10) 00:00 06:23 00:00 00:00 005:38 (03)
d7 (01) 00:00 00:37 00:00 00:00 000:00 (00)
d8 (01) 00:00 00:37 00:00 00:00 000:00 (00)

Figure 1: home-made counters display

3 New organization

As operators are now present only from 6am to 9pm, the
organization of the computing center has changed:

From 8:30 am to 5 pm, operators are doing the same
work as in the former organization.

From 5 pm to 9 pm, operators submit all the jobs.
They can solve some jobs problems as network failures,
bad gsub options, etc...

From 9 pm to 6 am, machines are working in the new

automatic mode.

From 6 am to 8:30 am, operators make a report on
night operations, address it to each department, and switch
to day mode.

4 CPU resource partitioning

Before the arrival of the T3D, each user was free to use as
much CPU as he wanted during working hours. Depart-
ments were penalized during night proportionally to day
usage (cf “counters”).

When the T3D was connected to the Y-MP 4I, some
users moved to T3D code development. As T3D compi-
lations need a lot of Y-MP CPU, we decided to partition
the CPU resource between “classic” Y-MP users and T3D
users.

To achieve this partitioning, we used the Fair Share
Scheduler [4, 5] and defined resource groups as shown in
figure 2.

The third group (system administrators) can use 20 %
of the power but actually uses about 2 % of the resource.

As the Fair Share Scheduler accounts for the CPU used
by each resource group, we defined a resource group for
each of our departments and abandoned our home-made
counters.

System administrators Y-MP users T3D users
0% AQ% 40%
S §
AN ~.
“ \ l.'
¥ N\ \ ’ L}
D1 D2 D3
. b5id %
re ty r
ul w2 a3 w4 oS

Figure 2: Fair Share groups arborescence for the Y-MP 41
(T3D host)

5 Control automation

As machines have to be autonomous from 9pm to 6am,
we studied how to satisfy automatically the requirements
stated in § 1.

To achieve the automatic control, we chose an improve-
ment of our usage of NQS rather than the design of a new
large product. Usage of URM [4, 5, 3] was turn down as
the problem to solve was a “pure batch” scheduling prob-
lem. Usage of NQS user-ezits [4] and Fair Share Scheduler
was a key tool in the development of the product.

The Fair Share Scheduler provides us the accumulated
CPU usage of each user and resource group {our depart-
ments).

NQ@S user-ezits are site-custom C functions linked
with ngsdaemon, the process managing NQS requests.
Those functions are called at strategic points by standard
ngsdaemon functions and can access all C structures of the
program.

The two user-exits we customized are :

e ngs_nex_jobselect.c, provided to customize the job
selection policy,

e nqs_uex shrpri.c, provided to customize the N@QS
fair share priority calculation.

5.1 Job Ordering

All the jobs for the night wait in a unique batch queue.
We have to start them according to the departments CPU
quotas without changing the order imposed by each de-
partment. Our job scheduling is done by NQS intra queue
priority weighting factors. Those factors are:

¢ Time-in-queue (the only non nul! factor in FIFO strat-
egy),

o Requested CPU Time,
¢ Requested Memory,

e Fair Share Priority.

CUG 1995 Spring Proceedings 227

5.1.1 Departments CPU quotas

To comply with the departments CPU quotas, we aban-
doned our old systemn of counters for the fair-share sched-
uler counters because they are integrated in the system
and easy to interface with NQS.

The default NQS fair-share priority i1s a per user prior-
ity. We customized the user-exit nqs_mex shrpri.c to get
the same priority for all users of a resource group (our de-
partments). Based on an example provided by CRI, this
modification was very cheap (2 lines changed).

5.1.2 Intra-department scheduling

The jobs of a department are submitted to NQS in de-
scending priority order, following the department direc-
tives.

5.1.3 How to deal with those two criteria

The gmgr intra queue weighting factors we use are:

set shed_factor share 20
first sorting criterion
set sched_factor cpu 0
set sched_factor memory 0
set sched_factor time 1
second sorting criterion

5.2 Job dependency

To take account of the restricted dependencies described in
§ 1.2, we modified the user-exit ngs_uez_jobselect.c. Each
candidate to execution is proposed by NQS to this user-exit
which can force or refuse the execution. This modification
costs about 50 lines.

5.3 Memory management

The jobs of our customers can request up to 100 Mwords of
memory. As our Y-MPs have only 128 Mwords, we have to
use some tricks to allow large jobs to run without leading
to excessive memory swap.

Constants used in this subsection :

Nproc: number of processors (Nproe = 4 or 8 on our Y-

MPs),

H,..r: maximum available memory for “hog” processes

(Hmaz & 115Mwords on our Y-MPs),

5.3.1 What we can do with standard NQS

The three parameters provided by NQS to optimize mem-
ory usage are :

1. the maximum number of running requests,
2. the maximum memory per request,

3. the maximum memory for all requests.

228 CUG 1995 Spring Proceedings

We set the marimum number of running requests to
Nproc + 2 as it seems to be a good compromise to avoid
CPU idle and allow large jobs to enter the memory.

We set the mazimum memory per request to 100
Mwords.

The marimum memory for all requests is more difficult
to tune as shown below:

o if we set the maximum memory to a low value

set global memory_limit=115mw
1 * Hmax

There 1s no memory swap. However, large jobs can be
blocked forever as each finishing small job is replaced
by a small one; and late prime-time requests can be
blocked in queue if a large job is in memory.

o if we set the maximum memory to a high value

set global memory_limit=345mw
3 * Hmax

The scheduling of jobs is maintained, late prime-time
requests can enter the memory. However, several very
large jobs can be in execution simultaneously, gen-
erating a lot of swap activity which may block late
interactive users sessions.

So we decided to modify a user-exit to control the NQS
memory usage.

5.3.2 What we did with user-exits

Enforcing the job scheduling is very easy (1 line in
ngs_uex_jobselect.c), but is not sufficient: if several jobs
requesting each about 3/4 of the memory are at the head of
the queue, only one of them can be in memory, so Npro. — 1
processors are idle and 1/4 of the memory is free.

Enforcing the maintain of large job scheduling and
limiting the space occupied by those jobs insure
the execution of large jobs, avoid swap between large jobs
and limit swap activity.

We consider jobs requesting more than Hmaz/Nproc as
large jobs. We limit the memory available for those large
jobs to Hynar and enforce their scheduling. The total mem-
ory limit (large + small) is fixed to 2Hmqz.

This modification represents about 70 lines of C in
ngs.uex_jobselect.c.

6 Prime-time improvements

We took advantage of the knowledge we gained automating
the night submission to improve the day NQS configura-
tion.

As in non prime-time, we have constraints to respect:

e control of job dependency {as in non prime-time),
e “fair” scheduling of requests,

e control of machine-gun submissions,

o control of swap (critical for interactive use).

The control of job dependency is realized using the same
mechanism as in non prime-time.

6.1 “Fair” scheduling of requests

In prime-time, we autorize users to ask up to 10 CPU
minutes and 32 (48 on Y-MP 4I) Mwords of memory per
request. As we very often have more than 20 requests in
queue, it is important to find a “Fair” priority policy.

So, we defined a batch queue normal which accepts re-
quests asking for less than 10 minutes and 32 Mwords (48
Mwords on Y-MP 4-128) and set the intra-queue weighting
factors to the following values:

set sched_factor share O # S=0
set sched_factor cpu 6 # C=6
set sched_factor memory 1 # M=1
set sched_factor time 10 # T=10

This setting favors requests asking for little CPU and
little memory, but limits to

T

Tmez = TS M ~ 3.33

the ratio of waiting time between two jobs.

To avoid very short jobs to wait, we defined a queue
express accepting requests asking for less than 30 CPU
seconds and 8 Mwords.

Requests asking for MPP resources are routed to the
pe128m10 batch queue which accepts requests asking for
less than 10 MPP minutes on 128 PEs.

6.2 Control of machine-gun submissions
6.2.1 What we can do with standard NQS

To prevent a user from monopolizing the NQS resources,
NQS offers the possibility to limit the number of running
jobs per user:

set complex user_limit=2 prime-time
The weaknesses of this setting are:

e a single user (not using multitasking) cannot use all
the processors of the machine,

e a “relentless” user could submit a sequence of jobs
which will arrive at the same time at the head of the
queue. Each finishing job of this user will be replaced
by a job of the same user.

6.2.2 What we did with user exits

When a request is elected for execution, the date of arrival
in queue of other requests from the same user is changed
to the current date. This modification represents about 10
lines in nqs_uex_jobselect.c.

The behavior is the same as if users waited their job to
enter execution to submit the next one. It provides us a
fairer order and allows us to set the user limit to the
number of processors.

6.3 Control of swap

To deal with the swapping of interactive jobs, we changed
some nschedv(8) parameters. We set small proc to 1000
clicks to accept sh, csh, vi and emacs as small processes,
and itime to 120 to avoid those small processes to be
swapped before 2 minutes without terminal input.

Other nschedv parameters can be usefull. Among them,
the limitation of hog_max_mem and the usage of nfactor_in
and nfactor out are described in {1, 2].

Conclusions and future work

As there are no longer any operator during the night and
week-end, we replaced the human control by a system
based on NQS user-exits and Fair Share Scheduler coun-
ters. As shown in this paper, NQS user-exits are easy to
use and well adapted to customize job management. The
Cray Fair Share Scheduler is a reliable tool allowing us to
select jobs according to departments quotas and to grant
a specific percentage of CPU devoted to Y-MP frontal ex-
ecutions for the T3D.

The automatic organization has now been experimented
for two months, offering the same service to users as be-
fore. We gain from the machines a quite full usage of their
processors (97 %) as well as in the manual control.

We also acted on prime-time submission control, provid-
ing a fairer job scheduling during working hours.

We now think to various enhancements to complete the
automation. Among others, we are working on:

e integration of general job dependency management,
o automatic action on network problems,
e automatic night report,

¢ better control of swap during prime-time.

References

[1] George W. Vanden Berghe. Insuring dedicated
throughput for high priority work in an undedicated
environment. In CUG 1994 Fall Proceedings, pages
361-370, 1994.

CUG 1995 Spring Proceedings 229

(2]

(3]
[4]

(5]

[7]

Chris Brady, Don Thorp, and Jeff Pack. Priority-based
memory scheduling. In CUG 1994 Spring Proceedings,
pages 221-223, 1994.

Hubert Bush. Unicos 8.0 experiences. In CUG 1994
Spring Proceedings, pages 237-238, 1994.

Inc. Cray Research. UNICOS System Administration,
S5G-2118 8.0.

Inc. Cray Research. UNICOS Tuning Guide, SR-2099
8.0.

Joseph Harrar and Francis Belot. Live operations at
cea-cel/v. In CUG 1994 Fall Proceedings, pages 213~
221, 1994.

Marko Lemieux. Throughput degradation analysis in
a heterogeneous environment. In CUG 1994 Fall Pro-
ceedings, pages 395-401, 1994.

230 CUG 1995 Spring Proceedings

