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ABSTRACT: 

 

This paper gives an overview of the shared memory access (SHMEM) routines in
the Libsma library on CRAY T3D

 

TM

 

 systems.  Routines are available which perform synchroniza-
tion, data cache tuning, remote memory read and write, and collective operations such as broad-
casting and reduction.  Specific program examples are provided to help illustrate the usefulness
and usability of the SHMEM routines.

 

1 Introduction

 

The Libsma library contains an assortment of efficient
routines which take advantage of the logically shared memory
on CRAY T3D

 

TM

 

 systems.  A logically shared memory is one
which allows any processor element (PE) to access memory in
a remote PE without involving the microprocessor on the
remote PE. 

The Libsma shared memory (SHMEM) routines, together
with Cray Research MPP Programing Model (CRAFT) and
message-passing libraries such as PVM, offer the user several
options for accomplishing some of the same tasks.  The intent
of this paper is to point out situations where use of SHMEM
routines might be the right choice.  It is also important to keep
in mind that whether to use SHMEM, PVM, or CRAFT is not
an “either-or” decision.  The same program might use PVM for
portability or CRAFT for simplicity, but use SHMEM in the
bottleneck kernel of the application to enhance performance.

 

2 Alternatives to SHMEM:  PVM and CRAFT

 

The PVM library offers a portable message passing para-
digm.  Unlike SHMEM, PVM is implemented on a wide variety
of machine types, including cluster MPP systems, workstations,
and logically shared memory MPP systems.   SHMEM routines
are designed with the assumption of  logically shared memory,
and to date have been implemented only on CRAY T3D

 

TM

 

systems.
The main disadvantage of the highly portable PVM interface

(and any traditional message-passing interface) is that these
interfaces have higher latency than for comparable SHMEM
transfers.  This extra latency is due to the extra functionality
inherent in message-passing--especially support for buffering,
queueing, and implicit synchronization--that is not needed by

many MPP programs.  In addition, having to match send and
receive calls introduces unnecessary complexity to many
programs.

A second alternative to using SHMEM routines is CRAFT.
This programming model offers user-friendly data distribution
and work sharing constructs.  With user-friendliness, however,
comes the disadvantage that the easily programmed code might
not always map to an optimal pattern of global data access.

 

3 Top Ten Reasons to Use SHMEM

 

There are reasons to use SHMEM routines based on perfor-
mance and functionality.  The basic communication primitives
(

 

shmem_get

 

, 

 

shmem_put

 

, and 

 

shmem_swap

 

) have very
low latency and high bandwidth.  Some SHMEM collective
routines (for example 

 

shmem_broadcast

 

), offer function-
ality not available directly via PVM.  This section proposes that
the top ten reasons to use SHMEM routines are:

1. Efficient remote data transfer.

2. Ease of use.

3. Efficient gather/scatter of remote data.

4. All-to-all data collections.

5.  One-to-all broadcasting.

6. Atomic swap.

7. An assortment of reductions.

8. Locking of critical regions.

9. Barriers for task teams.

10. Other task team operations.

 

3.1 Efficient Remote Data Transfer

 

Perhaps the most familiar SHMEM routines are

 

shmem_put 

 

and 

 

shmem_get.

 

 These routines  transfer 64
bit words from a source to a target address.  Copying from a
remote source (on a different PE) to a local target is called a

 

GET

 

 operation.  The reverse is called a 

 

PUT

 

 operation.   Copyright 

 


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PUTs have very low latency and very high bandwidth
compared to the other methods for remote data transfer,
including PVM channels, PVM, and GETs.  The graph below
compares transfer rates for the various remote data transfer
methods.

 

 
The 64 bit 

 

shmem_put

 

 routine has a peak transfer rate of
about 130 MBytes/sec., with half the peak rate achieved at
transfer sizes of 65 words.  The 

 

shmem_get

 

 routine has a peak
transfer rate of about 40 Mbytes/sec., with half the peak rate
achieved at transfer sizes of 14 words.  Because GETs are much
slower than PUTs, best performance is achieved if algorithms
use PUTs.

Special-purpose PUT and GET  routines are also available
which transfer 32 bit data or strided data.

PUTs and GETs differ in their effect on the data cache.
PUTs can cause the data cache on the receiving PE to become
incoherent on CRAY T3D systems.   Cache management
routines such as 

 

shmem_udcflush

 

 and

 

shmem_set_cache_invalidate

 

 must be used on the
receiving PE in conjunction with PUT routines.  GET routines,
on the other hand, never make the cache invalid because
memory update is done via memory stores which write through
the local data cache.

Here is an example which puts 10 words from the 

 

source

 

array on PE 1 to the 

 

target

 

 array on PE 2:

 

/* This program requires at least 3 PEs */

 

#include <mpp/shmem.h>

main()

{

long source[10] = { 1, 2, 3, 4, 5,

 6, 7, 8, 9, 10 };

static long target[10];/*must be static*/

if (_my_pe() == 1) {

shmem_put(target, source, 10, 2);

}

barrier();      /* wait for completion */

if (_my_pe() == 2) {

shmem_udcflush(target);

printf(“target[0] on PE 2: %d\n”,

target[0]);

}

}

 

3.2 Ease of Use

 

SHMEM interfaces can sometimes be simpler than more
portable message passing paradigms.  This is because manage-
ment of tasks on clusters, for example, is typically more compli-
cated than managing tasks for PEs on single machines.  In
addition, the one-sided style of communication which SHMEM
offers (and which is made possible by an underlying logically
shared memory system) is simpler because a matching receive
request need not match every send request.

There are some  complexities associated with SHMEM
routines, for example the 

 

pSync

 

 and 

 

pWrk

 

 arrays which are
illustrated in section 3.8.  But for many cases, coding with
SHMEM can be simpler and less error-prone than with PVM.

To get a taste of the difference between programming with
SHMEM and PVM, the following PVM program is presented
which accomplishes the same task as the previous program
example which used 

 

shmem_put

 

. 

 

/* This program require at least 3 PEs */

#include <mpp/pvm3.h>

main()

{

long source[10] = { 1, 2, 3, 4, 5, 6,

  7, 8, 9, 10 };

long target[10];

int msgtag = 99999;

if (_my_pe() == 1) {

(void) pvm_psend(2, msgtag,

(char*)source, 10,PVM_LONG);

}

if (_my_pe() == 2) {

(void) pvm_precv(1, msgtag, 

(char*)target, 10,PVM_LONG,

NULL, NULL, NULL);

 printf(“target[0] on PE 2: %d\n”, 

target[0]);

}

}

 

The PVM program needs the receiver-side call to

 

pvm_precv

 

 which matches the sender-side call to

 

pvm_psend

 

.   In contrast, the SHMEM program needs to
invalidate the cache associated with the receiving variable on
the receiving side.
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3.3 Efficient Gather/Scatter of Remote Data

 

One task which is simple and efficient to do with SHMEM
is gather/scatter of  remote data.  This capability is not available
with PVM (the 

 

pvm_gather

 

 and 

 

pvm_scatter

 

 functions
are 

 

not

 

 indexed gather/scatter functions).  The following
example copies 

 

SOURCE

 

 array on PE 1 to the 

 

TARGET

 

 array on
PE 0 with the order of the elements reversed: 

 

! This program requires at least 2 PEs

! SHMEM_IXGET requires that SOURCE have

! the SAVE attribute

SAVE SOURCE

INTEGER SOURCE(4)

INTEGER TARGET(4), SRCINDEX(4)

INTRINSIC MY_PE

IF (MY_PE().EQ.1) THEN

  DO I = 1,4

SOURCE(I) = I

  ENDDO

ENDIF

! Ensure that SOURCE is initialized

CALL BARRIER()

IF (MY_PE().EQ.0) THEN

  ! The gather will invert the order of

! SOURCE.  Note that the index array

! contains 0-based indices.

  DO I = 1,4

    SRCINDEX(I) = 4-I

  ENDDO

  CALL SHMEM_IXGET(TARGET, SOURCE, 

     & SRCINDEX, 4, 1)

  PRINT*,’PE ‘,MY_PE(),’ TARGET=’,TARGET

ENDIF

END

 

3.4 All-to-all Data Collections  

 

The 

 

shmem_fcollect

 

 routine efficiently updates a target
array on all PEs such that element 

 

I

 

 of the source array on PE

 

P 

 

is copied to element 

 

I*P 

 

of the target array.  This is similar
to the PVM function 

 

pvm_gather

 

, with the difference that
the PVM function updates the target on only one of the PEs.

 

 

 

A
call to 

 

pvm_gather

 

 followed by a call to 

 

pvm_broadcast

 

would produce the same result as one call to

 

shmem_fcollect

 

, but the call to 

 

shmem_fcollect

 

 is
faster.

The following example C program uses

 

shmem_fcollect

 

 to copy the value of variable 

 

myvalue

 

from all PEs to the local 

 

allvals

 

 array:

 

#include <mpp/shmem.h>

#define NPE 4                /* assume 4 PEs */

main()

{

 

static long myvalue; 

static long allvals[NPE];

static long 

pSync[_SHMEM_COLLECT_SYNC_SIZE];

int i;

 

for(i=0;i<_SHMEM_COLLECT_SYNC_SIZE;i++)

pSync[i] = _SHMEM_SYNC_VALUE; 

     myvalue = _my_pe();

/*

 * Wait for pSync and myvalue to be

 * initialized on all PEs. 

 */

barrier();              

shmem_follect(allvals, &myvalue, 1, 0, 

0, _num_pes(), pSync);

 

printf(

“PE %d: collected values = %d %d %d %d\n”,

              _my_pe(), allvals[0], allvals[1],

 allvals[2], allvals[3]);

}

 

The output is:

 

PE 1: collected values = 0 1 2 3

PE 3: collected values = 0 1 2 3

PE 0: collected values = 0 1 2 3

PE 2: collected values = 0 1 2 3

 

The pattern of remote memory transfer for

 

shmem_fcollect

 

 is the same as the following CRAFT
example:

 

        INTEGER SH(0:N$PES-1)

CDIR$ SHARED SH(:BLOCK)

        INTEGER PR(N$PES)

        INTRINSIC MY_PE

 

        SH(MY_PE()) = MY_PE()

        CALL BARRIER

        PR = SH

        PRINT*,’PE ‘,MY_PE(),’ PR = ‘,PR

        END

 

The output is:

 

PE 0 PR = 0,  1,  2,  3

PE 2 PR = 0,  1,  2,  3

PE 1 PR = 0,  1,  2,  3

PE 3 PR = 0,  1,  2,  3

 

3.5 One-to-all Broadcasting

 

The 

 

shmem_broadcast

 

 routine copies an array on one
PE to the target array on all other PEs.  The broadcast algorithm
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organizes the PEs into a binary tree and broadcasts the data by
fan-out  through the tree.

Below is a graph which shows the logarithmic performance
of 

 

shmem_broadcast

 

 which arises from the efficient
fan-out algorithm.

Here is a simple Fortran program which calls

 

SHMEM_BROADCAST

 

:

 

        INCLUDE “mpp/shmem.fh”

        INTEGER PSYNC(SHMEM_BCAST_SYNC_SIZE)

        DATA PSYNC 

& /SHMEM_BCAST_SYNC_SIZE*SHMEM_SYNC_VALUE/

        INTEGER TARGET(10), SOURCE(10)

        SAVE TARGET, SOURCE

        CALL SHMEM_BROADCAST(TARGET, SOURCE, 

& 10, 0, 0, 0, N$PES, PSYNC)

        END

 

The 

 

shmem_broadcast

 

 routine is much faster than

 

pvm_broadcast

 

, which is the PVM routine that provides the
same capability.

 

3.6 Atomic Swap

 

The CRAY T3D hardware provides support for atomic swap
operations on remote or local memory.  An atomic swap opera-
tions reads the current value of a memory word and updates the
same  word as one atomic operation.   The SHMEM routine

 

shmem_swap

 

 is an interface to this hardware capability.

This short Fortran program demonstrates how to call

 

SHMEM_SWAP

 

:

 

INTEGER SHMEM_SWAP

INTEGER TARGET, NEWVALUE, OLDVALUE

SAVE TARGET

 

TARGET = 33

NEWVALUE = 44

OLDVALUE = SHMEM_SWAP(TARGET, NEWVALUE, 0)

PRINT*,’TARGET=’,TARGET

PRINT*,’OLDVALUE=’,OLDVALUE

PRINT*,’NEWVALUE=’,NEWVALUE

END

 

 When run on one PE, the following output results:

 

 TARGET=44

 OLDVALUE=33

 NEWVALUE=44 

 

3.7 An Assortment of Reductions 

 

A family of SHMEM reduction routines are available for
most common arithmetic functions and most data types.
Supported operations include:

• min

• max

• product

• sum

• or

• xor

• and

A reduction programming example may be seen in section
3.8.  PVM provides most of the same reductions which are
available and much faster with SHMEM.  

 

3.8 Locking of Critical Regions 

 

The 

 

shmem_set_lock

 

 and 

 

shmem_clear_lock

 

 func-
tions use shared memory to implement mutual exclusion
locking.   CRAFT programmers have access to the similar

 

SET_LOCK and CLEAR_LOCK functions, but C programmers
cannot use these functions because they require use of CRAFT
distributed arrays.  The following example program uses
shmem_set_lock and shmem_clear_lock to protect a
critical region and the shmem_int_min_to_all reduction
function to detect which PE traversed the critical region in
minimum time.
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#include <mpp/shmem.h>

main()

{

static int

pWrk[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];

static long

pSync[_SHMEM_REDUCE_SYNC_SIZE];

static int mintime;

static int mytime;

static long slock;

int t0, t1, i;

char *chp;

 

for (i=0; i<_SHMEM_REDUCE_SYNC_SIZE; i++)

pSync[i] = _SHMEM_SYNC_VALUE;

 

barrier();

 

t0 = _rtc();

shmem_set_lock(&slock);

do_work();      /* critical region */

shmem_clear_lock(&slock);

t1 = _rtc();

 

mytime = t1 - t0;

 

/* find the PE with minimum time */

shmem_int_min_to_all(&mintime, &mytime,

1, 0, 0, _num_pes(), pWrk, pSync);

 

chp = mintime == mytime ? “<---” : “”;

printf(“PE %d mytime=%d mintime=%d %s\n”,

_my_pe(), mytime, mintime, chp);

 }

 

do_work()

{

static int accum;

accum++;

}

 This yields the following output when run with 4 PEs:
PE 3 mytime=3074 mintime=3074 <---

PE 2 mytime=3107 mintime=3074 

PE 1 mytime=3086 mintime=3074 

PE 0 mytime=3158 mintime=3074 

3.9 Barriers for Task Teams
 Sometimes it is useful to partition the available PEs into

groups which communicate among themselves.  To synchro-
nize the communication, a barrier call is needed which targets a
specific subset of PEs.  This is the function provided by the
shmem_barrier routine.

As an example, the following program groups the PEs into
pairs.  Each PE sends the address of a stack variable to its
partner so that PUTs and GETs could later be done using that
remote address.

#include <mpp/shmem.h>

 

long pSync[_SHMEM_BARRIER_SYNC_SIZE];

 

main()

{

int mainvar;

int i;

 

for (i=0; i<_SHMEM_BARRIER_SYNC_SIZE; i++)

pSync[i] = _SHMEM_SYNC_VALUE;

 

barrier();

 

if (_my_pe() & 1) 

extra();

else

doit(&mainvar);

}

 

extra()

{

int stackvar;

doit(&stackvar);

}

 

doit(int *stv)

{

static long in_box;

static long out_box;

int partner =  (_my_pe() ^ 1);  /* xor */

int PE_start = (_my_pe() & ~1);

 

out_box = (long)stv;

shmem_put(&in_box, &out_box, 1, partner);

shmem_barrier(PE_start, 0, 2, pSync);

shmem_udflush_line(&in_box);

printf(“PE %d partner’s stv addr: %x\n”,

_my_pe(), in_box);

}

The output when run with 4 PEs is:
PE 3 partner’s stv addr: 60ffffeef0

PE 2 partner’s stv addr: 60ffffee20

PE 0 partner’s stv addr: 60ffffee20

PE 1 partner’s stv addr: 60ffffeef0

3.10 Other Task Team Operations 
The example program in section 3.9 illustrated the use of

task teams.  In that case the teams consisted of 2 PEs each.
SHMEM routines in general support task teams of any size,
with optional striding between the PEs in a task team, or active
PE set.  The stride between PEs in an active PE set must be a
power of 2.

The following SHMEM routines allow the specification of
an active PE set:

• shmem_barrier

• shmem_broadcast

• shmem_collect
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• shmem_fcollect

• the SHMEM reduction routines

PVM supports a more general form of task teaming with its
task groups.  Setting up PVM task groups is more complex and
using PVM task groups can be much slower than SHMEM
active PE sets.

4 Where to Get More Information

With the CrayLibs_M 1.2 release, two manuals are available
which document SHMEM routines for C and Fortran users:

• SN-2516, The SHMEM Technical Note for  FORTRAN

• SN-2517, The SHMEM Technical Note for C

 In CrayLibs_M 1.2.0.3 and later, a full set of SHMEM man
pages are available on-line.   These man pages will be included
in SR-2165, The  Application Programmer’s Library Reference

Manual  in the next major CrayLibs_M release.  The
intro_shmem(3) man page is a highly recommended source
of SHMEM information for novice users.

Cray Research offers training class TR-T3DAPPL, “Cray
T3D Applications Programming”.  This class gives an overview
of CRAFT, PVM, and SHMEM programming on CRAY T3D
systems.

5 Conclusion

The SHMEM routines in library Libsma offer a wide variety
of subroutines to help accomplish tasks related to
inter-processor communication on CRAY T3D systems.  The
advantages in areas of performance, usability, and functionality
make the SHMEM routines a very viable alternative to portable
message passing libraries and CRAFT.


