

332

CUG 1995 Spring

 Proceedings

Locally Developed Utilities Simplify
Cray User Interface

Donald Moore

, Hughes STX for the NASA Center for Computational
Sciences, NASA/GSFC, Greenbelt, Maryland

ABSTRACT:

The NASA Center for Computational Sciences (NCCS) at Goddard Space Flight
Center (GSFC) has developed a suite of Cray-resident utilities for use on their Cray C98. The
purpose is to (1) simplify the display of information and (2) facilitate communication between the
Cray and other NCCS platforms, namely an IBM 9021 and a Convex mounted UniTree mass data
storage system. Software design emphasis centered on portability, maintainability and ease of
use. The utilities fall under the general categories of information display and data transfer. The
interplatform utilities in the suite are either FTP or Cray Station Software (CSS) based. Most of
the utilities are written in Bourne or Korn shell script and are written to resemble the conven-
tional UNIX command structure. In most cases they are executable in either batch or interactive
mode.

Who We Are

The NCCS supports NASA funded space and earth sciences
research by providing its user community with three major
computational and data storage platforms: a Cray C98 Super-
computer, a Convex-based UniTree mass data storage facility
and an IBM 9021 mainframe. The Technical Assistance Group
(TAG), along with other NCCS personnel have developed a
suite of utilities to be used by the user community.

The Development Philosophy

The NCCS user utilities adhere to a development philosophy
that ensures their usefulness over an extended period of time.
That is, that locally developed utilities should share the
following characteristics: (1) consistency, (2) porta-
bility--where applicable, (3) UNIX-like execution, (4) interac-
tive and batch execution capabilities, (5) maintainability.

Consistency

--Consistency is achieved by keeping command
line options consistent (as much as practical) throughout the
various utilities. In other words, a -u or -i option would perform
identical (or similar) functions from one utility to the next.
Also, many data transfer utilities record their activities in a log
file and optionally utilize a parameter defaults file (much like a
.netrc file). The log file and defaults file are common to most
of the NCCS FTP-based utilities.

Portability

--Virtually all of the UNIX-resident TAG utili-
ties are written in Bourne shell script. Those that interface with
non-UNIX platforms (i.e. the IBM mainframe) are usually a
combination of Bourne shell script and the foreign machine's

system specific language(s). For FTP-based utilities the Bourne
shell scripting language allows them to be easily ported to other
UNIX platforms. The NCCS Bourne shell scripts are written
primarily for machines which are System V based (as is the
Cray) but can usually be easily modified to run on
Berkeley-based platforms. Some early utilities were written in
C (before the ANSI standard was accepted) and proved to be
frustratingly non-portable. Hence the adoption of the practice
of coding in the Bourne shell.

UNIX-like execution

--Where utilities contain command
line options, they follow the conventions of other UNIX
commands. Command line options are generally one character
preceded by a dash. Options that do not take arguments can be
grouped together following a single dash. Lower case charac-
ters are preferred over upper case. If a user enters an incorrect
option or enters no options, the utilities will typically display
the syntax and a list of all available options. Also included in
the display is an explanation of how each option is used. In this
manner they diverge from UNIX de facto standards as a typical
UNIX command does not produce a usage display when no
options are entered nor does it give explanations of the purpose
of each option (see figure 1). Nearly all of the local utility
names are entirely lower case which is also consistent with the
UNIX de facto standards.

Interactive/Batch execution

--Most of the utilities can be
executed either in batch mode or interactively. Even though
many were developed for execution in batch jobs, the interac-
tive option provides a means for access to the same function-
ality without the need to memorize a string of options. If a user

CUG 1995 Spring

 Proceedings

333

selects the interactive option he/she is prompted to enter all of
the parameters required to execute the utility. The interface to
all existing utilities is a character prompting and entry mecha-
nism. None, as yet, contain a Graphical User Interface (GUI).

Maintainability

--The TAG utilities are usually maintained
by the utilities' authors. Every effort is made to make certain
that no values such as pathnames, field numbers or timing
values are buried deep into the code. All such values are stored
in variables in an initialization section at the beginning of the
code for easy modification. All code contains in-line
comments. Code pieces which perform specific, self-contained
actions are broken into Bourne shell functions. This, in truth, is
more often the case for the later utilities than for those that were
written early. The unpleasant experience of attempting to
modify code that was not cleanly structured from the start has
served as a powerful source of inspiration.

A Short History

The configuration of our facility has created the need for
several specialized user utilities. Our three major platforms
present an environment with two distinctly different operating
systems: UNIX and IBM MVS. UniTree, our mass data storage
system, resides on a Convex 3830 running a Berkeley version
of the UNIX operating system and is accessible only via FTP.
Our Cray C98 running the UNICOS operating system (based on
UNIX System V) also supports the Cray Data Migration
Facility (DMF) silo tape system.

Before 1990 the NCCS was primarily IBM-based and addi-
tionally supported a CYBER 205 supercomputer front-ended by
an IBM mainframe. The arrival of a Cray Y-MP in 1990
resulted in a large pool of users who were not UNIX literate but
who needed to do work on the new UNIX-based supercom-
puter. The facility also was moving away from hard-wired IBM
terminals toward UNIX workstations. Thus, early utilities were
geared toward a user community to whom UNIX was an unfa-
miliar environment. Also new to many of the users was the
concept of FTP data transfer. The early utilities sought to
address these issues. As the user community became more
UNIX literate and UNIX-based workstations continued to
proliferate, the needs for software tools also changed. As users
learned more about the UNICOS environment, they wanted
more information. As the NCCS added more hardware and
software, the users needed convenient ways to access these new
facilities and to gather information about them.

Addressing The Needs

NON-UNIX USERS

The first major utility attempted to provide tools that would
perform much of the UNICOS detail work for the users. It was
designed to interactively solicit a user for the parameters neces-
sary to build a batch script and submit a Cray job. It was written
with a combination of C code and Bourne shell script. Unfor-
tunately, the time and complexity involved in developing this
utility was greater than the learning curve of most of the user

community and therefore, was never implemented. It did,
however, serve as an instructional device for those users who
wanted to see examples of certain types of UNIX functionality
in a batch script such as job chaining.

STATUS CHECKING

 Users whose batch work depends on resources such as DMF
or files on remote FTP nodes need to determine if those
resources are available before beginning processing. Therefore,
the NCCS developed three "up or down" type status utilities for
use in batch scripts: utstat, dmfstat, testnode.

Often, users will have a number of large files stored in the
UniTree system which must be retrieved before running a batch
job on the Cray. Likewise, large output files created during a
job run often need to be stored to the UniTree system. The
utility, utstat, functions by executing a noop (no operation)
command to the UniTree system and checking for a character
string response which indicates whether or not the noop was
successful. Issuing a noop does not require a password and
hence lessens any security risk concerns. If an error is returned
from the noop or the system fails to respond within two minutes,
a non-zero code is returned. If the noop is successful, a zero is
returned. The user's code must test the return code value and
proceed accordingly.

The NCCS Cray C98 DMF provides a short term storage
area for users where files may be stored for up to an NCCS
imposed limit of 35 days. In order to actively migrate files from
the /silo disk cache to tape or to recall the files from tape to disk,
the DMF subsystem must be operational. The dmfstat utility
was developed to check the health of the DMF daemon. It
returns a zero value if the DMF daemon appears as an active
system process indicating that DMF processing is alive and
well. It returns a non-zero value if the DMF daemon cannot be
found. Used in a batch job script a user can then determine
whether or not DMF services are available at any given time
and put their job in a sleep state periodically checking for DMF
availability if so desired.

When files must be sent to or retrieved from remote FTP
nodes as part of a batch job, it is prudent to first check and see
if the node is reachable. Verifying that a critical remote node is
up prevents jobs from hanging on an unreachable resource. The
testnode utility performs a simple ping to the remote node and
looks for a response in a string of characters that indicates that
the remote node is up. A successful ping then causes testnode
to produce a zero return code. An unsuccessful ping results in
a non-zero return code. The testnode utility operates only in
batch mode since interactive pings are easy to do.

UNITREE INTERFACE

The UniTree mass data storage system can be accessed only
via FTP and supports only a subset of UNIX commands.
Several utilities have been developed in order to make user
access more powerful. In particular, users can only change the
access permissions of UniTree files one at a time. The UniTree
command set does not provide a mechanism for producing a

334

CUG 1995 Spring

 Proceedings

comprehensive list of files under any given subdirectory or the
amount of space they occupy. It is equally difficult to delete a
range of files once a list is compiled as UniTree only provides a
mechanism for deleting files one at a time. Therefore, users
often find it difficult to keep their UniTree storage area clean.
Lastly, users need an easy way to determine whether or not their
data files have been successfully transferred to UniTree.

The utch utility allows users to change the permissions for all
of the files under any UniTree subdirectory. It can also change
the group to which a subtree of files belong. The utch utility
provides this capability by recursively traversing a user speci-
fied UniTree subtree, building the UniTree equivalent of a
chmod command for every file in the tree. This same method-
ology applies for changing group ownership of UniTree files.

The netrdir and utlist utilities provide a comprehensive
listing of all files under a user specified subdirectory. The utlist
utility works only on UniTree files where netrdir provides a
comprehensive listing for any UNIX-based FTP site and also
reports the total amount of storage occupied under each subdi-
rectory visited. A grand total of all file space occupied appears
at the end of the subtree traversal. The utremove utility is a
companion to utlist and enables mass deletions from UniTree.
Users place a mark ($) before each file entry in the output file
generated by utlist and run the utremove utility. It will then
generate the FTP commands to delete the marked files. See
figure 2.

The utfcheck utility determines whether or not a user's file
was successfully transferred to the UniTree system. It
compares file sizes on the Cray to those transferred to UniTree.
If the sizes do not match (or the filenames do not appear), an
error message is generated and a non-zero value returned.

(The utstat utility has been covered under status checking
utilities.)

IBM INTERFACE

Many UNIX users interact with the IBM MVS system on a
very limited basis using it only as a storage medium or to read
in or scan tapes. Many of these users are not IBM MVS literate.
In order to alleviate, as much as possible, the detailed knowl-
edge needed to work with the IBM MVS system, NCCS staff
have created a suite of Cray/IBM interface utilities.

--Handling IBM Tapes

The IBM MVS system enjoys a reputation for excellent tape
handling capabilities. Also, much data stored on tape media in
the NCCS facility was generated on IBM machines often in
IBM standard label format. Users often need to format IBM
MVS tapes in preparation for storing data. They also need to
store data to tape, read data from tape or determine what infor-
mation currently resides on a tape and determine the tape's
format.

In order to address these requirements, NCCS personnel
developed the initT, anlyzT, nettape, fet and dispo utilities
which provide an interface to the IBM MVS tape system from
the Cray C98. All but the nettape utility are based on Cray

Station Software (CSS). The fet and dispo utilities simplify
user interaction with the fetch and dispose CSS commands to
send data to or retrieve it from tape. If run interactively, users
are prompted for the parameters necessary to describe the tape,
the files, their positions on the tape, etc. and builds the required
MVS text string within the dispose or fetch command. If run
via command line execution, these values are either left to
default or are entered on the command line.

The nettape utility is used only for MVS tape file retrieval.
It submits a job to the IBM MVS system via FTP which initiates
a tape copy using the IBM system program IEBGENER. Once
the files are copied to the respective data sets, an FTP job is
initiated on the IBM side which in turn sends the files back to
the Cray to a user-specified directory.

The initT and anlyzT utilities perform tape initialization and
tape scanning operations. Also, CSS-based, they solicit the user
(if run interactively) for the parameters which identify the tape
and the processing to be performed and building the JCL which
performs either a tape labeling or a tape scanning job. The
dispose command then submits the job to the IBM's job input
queue. When processing is complete a second job is spawned
on the IBM which notifies the user via electronic mail,
explaining how and where to retrieve the output. See figures 3
and 4.

--IBM Disk Data Transfer

The dispo and fet utilities mentioned above also provide
CSS-based access to IBM disk. When users wish to dispose or
FTP data to the IBM, they must first determine the amount of
disk space to allocate. The dispo utility automatically figures
the size of the file(s) in bytes to be stored and requests the
appropriate size in tracks from the IBM system. The netpush,
netpull and netjump utilities will also handle disk data transfers
to and from the IBM MVS system. The netpush utility will, like
the dispo utility, automatically calculate the track size and allo-
cate it on the IBM MVS system. These three utilities are
explained in greater detail below.

--Other IBM Interaction

Other kinds of interaction with the IBM include obtaining a
listing of IBM files for a given user's ID (lsmvs), deleting IBM
files (rmmvs), remotely creating an IBM MVS partitioned data
set (makepds), printing Cray files on the high speed IBM laser
printer (prt3800), changing IBM file format characteristics
(zapback), recalling archived data and listing archived data
(lshsmm, lshsmb and rclmvs). NCCS staff have created these
utilities to handle all of these kinds of interactions remotely.
They are all either FTP-based or CSS-based. See the complete
listing of all NCCS utilities at the end of this document.

BATCH DATA TRANSFER

The NCCS staff have developed three major utilities:
netpush, netpull and netjump designed as batch (and interac-
tive) FTP interfaces. The netpush and netpull utilities were
designed to send/retrieve data from other FTP reachable plat-
forms. Other than the batch (command line) capabilities they

CUG 1995 Spring

 Proceedings

335

provide an interactive interface which prompts users for param-
eters necessary to identify the remote file(s) to send or retrieve.
If the user has defined a defaults file (much like the commonly
available .netrc file), they will display a menu of predefined
nodes, user ID's and directory paths which the user can select.
A defaults file also allows users to perform routine transfers
without the need to enter all information on the command line
or interactively. Options are also provided to handle IBM MVS
specifics such as EBCDIC/ASCII character data translation,
record format interpretation, record control word preservation
and automatic preallocation of IBM MVS file space.

The netjump utility uses the netpull and netpush utilities as
its building blocks. It simulated proxy FTP before true proxy
FTP was widely available. This was accomplished by invoking
netpull to stage the data across the "home" node from the first
remote node and using netpush to the send the data to the second
remote node. A user defined defaults file is mandatory for
netjump execution in simulated proxy FTP mode. The netjump
utility now includes an option to invoke true proxy FTP where
it is available.

Any utilities that are named with the net prefix, log FTP
session information to a special file created in the user's home
directory. Because these utilities were designed with portability
in mind they can often be ported to a user's workstation. This
way they can be run without incurring the expense (or the
system impact) of running them on the Cray.

 DISPLAY SYSTEM INFORMATION

Some of the Cray system commands produce output that is
hard to interpret or visually confusing. In other cases, users
want information concerning the status of their accounts or of
system resources. The NCCS provides a number of utilities to
address these issues.

Two examples of utilities that reformat Cray system
command displays are showqs and dspace. The showqs utility
takes the output from the qstat -a command and organizes it so
that the display is easier to read and understand (see figure 5).
The dspace utility reformats the output from the Cray quota
command so that users can see their remaining disk space in
bytes rather than blocks (see figure 6).

The dmcounts utility displays the number of dmf recall and
migration requests waiting in queue. This information helps
users to determine the load on the DMF thereby enabling them
to identify a potential processing bottleneck and scheduling
their DMF interaction for low usage times (see figure 7). The
cusage utility displays the amount of Computing Units used for
a given account. This helps users determine the efficiency of
their resource utilization and helps them estimate the amount of
computing resources required to perform their tasks.

KEEPING USERS INFORMED

It is important to keep users abreast of any recent develop-
ments which could affect their batch or interactive work. The
NCCS staff employs two utilities, motdup and statup, to the
keep user community informed of the current system status,

scheduled system outages, new online documents and the like.
These utilities run on Sun workstations and, via FTP, update
files on the Cray as well as on other NCCS platforms. The
motdup utility modifies the /etc/motd file. Any user logging on
to an NCCS platform will see the latest system information.
The statup utility modifies a file which requires users to issue a
special command, statinfo, to display it. During regular busi-
ness hours, the information displayed by statinfo provides
up-to-date status information for all NCCS systems. See figure
8 for an example of the statinfo display.

Current Trends/Future Plans

As more standards are developed and better and more
diverse methods of implementation become available the
greater the opportunities for utility writers to find a good match
between implementation and the desired results. The establish-
ment of the C language ANSI standard and the wide availability
of the PERL script-like programming language have added two
powerful resources for building utilities. Also, some special
needs are too complex to be handled by one homogeneous,
self-contained implementation. At the NCCS some of the latest
utilities are now being written in PERL. PERL offers the
pattern matching capabilities of awk with many more features,
faster execution and greater capabilities. Execution of PERL
code also tends to be more consistent than awk across various
UNIX platforms. The utrefam utility is an example of a PERL
written NCCS utility. It is an interface to the UniTree mass data
storage system which allows users to change file families and to
optionally make file copies within a UniTree file subtree.

The most dramatic example of a complex and powerful
utility is the tapex/ TapeImport utility. The tapex utility exports
files to 4mm DAT tape, 8mm Exobyte, 3480/90 cartridge tape
from UniTree, the Cray C98 or the IBM 9021. There is also a
TapeImport interface to tapex which allows data to be imported
from 4mm DAT, 8mm Exobyte, 9-track reel style tape, and
3480/90 cartridges to the Cray C98, or UniTree. There is a
tapex interactive interface on the Cray, the IBM and the Convex
(where UniTree is mounted). The tapex software consists of
four separate shell scripts (Bourne and C shell) and a C interac-
tive interface on the Cray and the Convex. The IBM tapex
interface is written in REXX. There is no TapeImport capa-
bility on the IBM 9021. Because of the complexity and the
unique nature of the software it is not portable. The tapex/Tape-
Import utility fulfills a critical need for users who need to move
their data files out of or into the UniTree, Cray or IBM systems
via non-IBM tape media.

In November of 1994 the Cray Station Software was
removed from the NCCS Cray C98. This was done in anticipa-
tion of the removal of facility's IBM 9021 at the end of 1996.
The removal of the CSS eliminates the need for some
CSS-based utilities. Others such as initT and anlyzT have
already been converted to run on the FTP-based protocol.

336

CUG 1995 Spring

 Proceedings

The remaining non-CSS-based utilities will be enhanced,
modified or obsolesced as the facility continues to evolve.
Some will be converted to PERL or C.

Future utilities are likely to be developed in PERL and C
code except where a short, simple Bourne or Korn shell script
will suffice. Every effort will be made to keep future utilities
portable, maintainable and functionally consistent with existing
utilities. NCCS staff is currently experimenting with World
Wide Web applications which can read image files directly
from the UniTree mass data storage system. A Web-based
application is also being explored for simple UniTree file
retrieval in place of the traditional user interface with FTP.

Lessons Learned

• The lessons learned from user utilities development over an
extended period of time can be summed up as follows:

• Users will develop their own utilities or establish methods
for handling problems if a utility is not forthcoming to
address the problem in a timely fashion.

• Utilities should be easy to use. If you have made a difficult
interface more difficult, a confusing display more confusing
or a complex situation more complex, you have not
achieved anything. Go for simplicity in display and func-
tion.

• Stay consistent with your options and naming conventions
so as not to confuse your users.

• If possible, make the code for your utility portable. It
allows users to offload mundane processing from the Cray.
This benefits all Cray users.

• Utilities need not be complex to be useful. A simple script
of only a few lines can be just as valuable as a complex
piece of code if it makes someone's job easier.

• Take the extra time to make your utilities maintainable. It
will save you much time and effort in the long run. Do not
write anything you do not want to maintain.

• Recognize when users are having problems with your util-
ity. Appreciate their objectivity. Pay attention to user feed-
back and change functionality when it seems prudent to do
so. Follow your user's suggestions and advice. Offer guid-
ance to users on how to best use your utilities and suggest
specific implementations for including your utilities that
will make their jobs easier.

• Do not make your utilities your pets. When better methods
become available, show your users how to use them and let
your utilities die.

• Make sure that you have good online documentation and
provide plenty of examples. Make sure you have clear, con-
cise man pages for each utility which include at least one
good example. Examples are the best way to demonstrate
how a utility can and should be used.

• Publicize your utilities. Users cannot use utilities if they do
not know they exist. Make sure that other colleagues who
are in contact with users know about your utilities and how
to use them. Give demos to your fellow workers and to
users when and where possible. If you have a mechanism
for announcing system changes, make sure modifications to
utilities or newly developed utilities are included in the
announcements.

• Recognize when a utility can improve a situation and write
one.

• Share information with your users and your co-workers. It
is a reciprocal thing. Make your code accessible to the user
community so they can learn from your code or use all or a
part of it if they wish. You may get your code back with an
improvement that you can use.

More Information About Our Facility

Online information about our facility is available via gopher
or the World Wide Web:

World Wide Web URL: http://nccsinfo.gsfc.nasa.gov/NCCS
Gopher Address: nccsinfo.gsfc.nasa.gov

CUG 1995 Spring

 Proceedings

337

Figure 1: Example of a local utility’s usage display.

Figure 2: UniTree files marked with “$” for deletion.

Figure 3: Interactive prompting to analyze a tape.

Figure 4: Utility anlyzT sends email to user.

338

CUG 1995 Spring

 Proceedings

Figure 5: qatat -a compared to showqs utility output.

CUG 1995 Spring

 Proceedings

339

Figure 6: Quota compared to dspace utility output.

Figure 7: Utility dmcounts shows dmf queues.

Figure 8: Example of statinfo display.

340

CUG 1995 Spring

 Proceedings

CUG 1995 Spring

 Proceedings

341

