

190

CUG 1996 Spring

 Proceedings

Future File System: An Evaluation

Brian Gaffey

 and

Daniel J. Messer

, Cray Research, Inc., Eagan,
Minnesota, USA

ABSTRACT:

Cray Research’s file system, NC1, is based on an early System V technology.
Cray has made a significant investment in NC1’s performance and reliability. Recent improve-
ments in file system technologies and new customer requirements drove us to undertake an eval-
uation of available file systems. This paper presents the results of our evaluation.

1 Introduction

With advances in storage technology and access to large
memory, Cray supercomputers can now solve data intensive
problems that were not conceivable a few years ago. On the
storage technology side, the amount of disk space is increasing
rapidly because of inexpensive technology such as SCSI and
RAID disks. High capacity disks are widely available and reli-
ability has increased. It is not uncommon to see large file
systems of tens or hundreds of Gigabytes spread across tens of
disks. In terms of memory, the Operating system must be able
to perform fast I/Os to transfer large amounts of data between
storage devices and large memories.

File systems and storage management mechanisms are now
held responsible to manage complex disks configurations.
Modern file systems must meet six major requirements:

• performance

• easy administration and maintenance

• system availability

• resiliency

• security

• standards compliance.

The CRAY native file system NC1, combined with the
Logical Device Driver (LDD) have been developed and opti-
mized to run on CRAY’s high-end products which solve data
intensive or I/O intensive problems. Cray is committed to high
performance and Cray’s file system proves it. Cray is also
committed to offer a file system solution that scales well with no
impact on administrability, system availability and resiliency.
Cray conducted a study to determine the best approach to offer
efficient scaling: develop and implement new capabilities inter-
nally or find an existing product on the market to integrate into
the Cray system.

This paper describes the process to evaluate the file systems
available and how they compare to Cray NC1 file system. At
this point in our evaluation, we’ve completed our feature and
performance comparisons. Our next step is to obtain the source
of the file systems and compare the implementations.

2 Requirements and Features

Our first step of the evaluation was to define the requirements
for the future file system and compare all the features currently
available in different products that fulfill these requirements.

2.1 Resiliency

Resiliency defines the stability and data coherency of the file
system when recovering from hardware or system failure. It also
defines the time to recover.

The feature which significantly improves the scaling of
recovery in modern file systems is called “journaling” or
“logging”. Non journal-based file systems such as NC1 must be
checked at boot time because unscheduled system downtime
can interrupt file system updates. Checking consistency for
large file systems can be time consuming. With journaling, file
systems do not have to be checked because changes from unfin-
ished system calls are discarded. The log only records updates
that modify the file system structure. When the file system
recovers the log is played back which considerably reduces the
time for recovery. Journaling is ranked as the most important
feature required in a new file system. Therefore, only file
systems with logging capability have been evaluated.

2.2 Performance

Cray is committed to continue to deliver performance. File
system performance is usually influenced by two factors: how
the file system handles the transfer of data from user space to
disk and how the device is accessed.

2.2.1 Transfer Of Data

There are several ways to transfer data between disk and user
space. The most effective features are:Copyright © Cray Research Inc. All rights reserved.

CUG 1996 Spring

 Proceedings

191

• Raw disk I/O,

• Buffered I/O

• Asynchronous I/O.

Raw disk I/O

 consists of direct data transfer between disk
and the user supplied buffer for reads and writes. It bypasses the
file system layer in the system. This is especially useful for data-
base applications. Among the file systems evaluated, only Cray
has implemented this feature.

Buffered I/O

 consists of a delayed write, in which the data is
put into a buffer at the system level but not written to disk before
the write returns to the caller. The user application is free to
continue processing. The system however must complete the
transfer to disk before processing any other task. In the same
manner, data is read ahead from disk to system buffer. All file
systems evaluated use buffering, also called cache, to achieve
performance.

Asynchronous I/O

 is similar in concept to Buffered I/O.
With Asynchronous I/O, however, the system is also free to do
something else before the data is written on disk. It is an impor-
tant distinction because there is often confusion between Buff-
ered and Asynchronous I/O. Only Cray NC1 can claim support
of Asynchronous I/O.

2.2.2 Physical Access

Extent-based allocation, space pre-allocation, explicit file
system alignment, primary/secondary allocation area and
contiguous space allocation are the most important methods
known to improve access to a disk.

 A disk is partitioned into physical sectors. File system archi-
tecture usually partitions the disk into logical blocks which
contain a fixed number of sectors. In the case of

Extent-based

file systems, an extent is defined as one or more adjacent blocks
of data within the file system. It means that disk I/O to and from
a file can be done in units of multiple blocks instead of one block
at a time.

Pre-allocation

 associates space with the file when it is
created rather than as data is written into the file. The space
cannot be allocated to other files in the file system. This prevents
an unexpected out-of-space condition on the file system.

Explicit file system alignment

 allows one to make a file
system with all the allocation units aligned to physical bound-
aries. It helps applications that are tuned to the specific disk they
reside on, doing I/O in track sizes or cylinder sizes.

Primary/secondary

 allocation area splits the data blocks
into two areas. One that will contain small files, the other large
files.

With

Contiguous space allocation

, when a reservation is
made, a specification can be included in the request that the allo-
cation of the reservation be contiguous. Maximum contiguity of
a file optimizes its I/O characteristics.

All these features are common in other file systems. Cray has
implemented all the features except contiguous space alloca-
tion.This feature analysis indicates that none of the file systems
evaluated can achieve Cray native file system performance.

2.3 Administrability and Maintainability

Administrability and maintainability define how easy it is to
use a file system from an administration point of view. This
requirement is increasingly important because, as file systems
spread across a large number of disks and as the number of file
systems to administer increases, the administration should
remain simple and the amount of time spent for maintenance
should remain constant. Several features are available in order to
facilitate file system administration such as file system creation,
graphical interface and on-line defragmentation.

 Although all file systems follow a similar interface to create
a file system, some are better suited for creation of large file
systems. Depending on the architecture, the time to create a file
system can be proportional to the size of the file system or not.
In an environment where large file systems are required the later
technology will be more appropriate.

Graphical interfaces

 provide an icon-based interface for
representation of system resources. Combined with an

auto
layout

 capability, it allows the administrator to have a clear
representation of the hardware and file system structures. It is
useful when tens of disks are involved.

Visual management

 allows an administrator to manage
system resources using a graphical interface instead of using text
commands.

On-line defragmentation

 allows gaps to be removed
between areas that are in use on a disk without unmounting the
file system that is being cleaned. Space is allocated or freed on
disk when files are created and remove. Free space is reused but
it is unlikely to be totally reallocated which creates holes. Frag-
mentation impacts performance especially when the file system
becomes full.

2.4 System Availability

System availability defines how disruptive administrative
operations are to the user. On-line operations allow one to signif-
icantly reduce down time for file systems. On-line disk move-
ment, resizing and backup are the most popular features.

On-line disk movement

 allows one to add, remove or
replace failed disks without disrupting the system or file systems
not affected by the disk failure.

On-line resizing

 allows one to resize a file system, grow or
shrink, without unmounting the file system or interrupting users’
productivity.

On-line backup

 provides the capability to take a snapshot
image of a mounted file system without disrupting the file
system. These features are implemented in some of the products
evaluated.

2.5 Standards

In a heterogenous environment it is important that the future
file system conforms to standards such as

POSIX

 but also to
standard protocols in order to offer functionality in storage
management such as distributed computing and Hierarchical
Storage Management (HSM).

192

CUG 1996 Spring

 Proceedings

2.5.1 Distributed Computing

In terms of distributed computing,

NFS

 and

DFS

support are
important. NFS and DFS support is in recognition of the general
industry trend towards client/server computing within a hetero-
geneous environment.

2.5.2 Hierarchical Storage Management

The current level of integration between

DMF

 [Cray HSM
solution] and NC1 is seen to be effective, however, it is not a
requirement that the HSM solution is tied so tightly to the file
system if this would allow a more open solution. Using the

DMIG

 interface to interact between the HSM and the file system
would be a preferable approach.

2.6 Conclusion

This analysis provides a list of features that would answer the
requirements of a new file system. Among the file systems eval-
uated, some provide most of the feature which could improve
NC1 in terms of usability, system availability and resiliency.
However, in terms of performance, the evaluation shows that
Cray’s file system is the strongest product.

3 Testing

The feature analysis points out that there are competitive
products on the market which could be good candidate to inte-
grate into Cray’s system to strengthen Cray’s file system solu-
tion. The following step of our evaluation was to conduct testing
on these file systems in order to determine the best candidate.

Three kinds of tests have been conducted:

• Functionality,

• stress

• performance tests.

Functionality tests

 verify that the products evaluated do
what they claim they do and provide a good feeling of their
administrability and maintainability.

Stress tests

 determine the file system limits such as the
maximum number of files. It also simulates how the file system
would react in a real multi-users environment where fragmenta-
tion occurs.

Performance tests

 are not relevant in terms of rates; they are
a good source of information to determine how the different file
systems have been optimized and how they compare against the
others. For example, a file system can be better optimized for a
large number of small I/Os while another is better suited for a
small number of large I/Os.

3.1 File Systems Tested

We evaluated only

journal-based

 file system since it seems
the best approach to improve the scalability of our file system.

Among many journal-based file systems available, three were
chosen for this evaluation because they answer most of the
requirements previously defined. Unfortunately, their names
and the name of the companies that developed them can not be
disclosed at this time because Cray is under negotiation with the

chosen candidate. Therefore, they will be described as File
Systems A, B and C.

3.2 Testing Environment

Two Solaris platforms have been used for testing because all
file systems evaluated were running in this environment.

A Sun IPC workstation running Solaris 2.4 was used for func-
tionality and stress testing. It contains 1 controller and 5 disks
(200 MB, 1.3GB, 1GB, 200MB, 200MB). Two 200MB disks
were fully available for the file system evaluation. 6 partitions
(900MB) were available on the 1GB disk. The 7th partition was
reserved.

A Cray CS6400 with 32 processors and 4Gbytes of memory
running Solaris 2.4 has been used for stress and performance
testing. 13GB (one partition per disk) were available, spread
across 8 controllers and 13 DD5S disks (Seagate Elite-3
ST43401N) with 1 to 3 disks per controller.

3.3 Functionality Testing

 Functionality testing focused mainly on administrability and
resiliency. In order for the tests to be valid, the features tested
were available on at least two of the candidate products.

The features tested are:

• file system creation

• on-line resizing

• journaling

• on-line backup

Because those features are processed through user
commands, depend on human intervention and don’t produce
any valuable numbers, there is no objective way to evaluate
them. However, there are criteria that facilitate the comparison
such as the number of user commands necessary to implement
or use the functionality, the number of administrative files to
modify and the timing to execute a feature. The best implemen-
tation should be one command, no administrative files to modify
and the fastest execution.

This paper only presents the

journaling

 functionality test. It
consisted of creating a 150MBytes file system, perform a first
test with logging turned off and a second test with logging. In
both cases the test consisted of mounting and populating the file
system, crash and reboot the system, and time the file system
check operation.

Table 1 presents the results for three file systems.

The interesting number in this test is to compare the time to
check the file system using the logging feature. Logging brings
a clear performance improvement in all cases. The table shows,
however, that the time to recover varies among the systems
tested. In this case, File System B is clearly the best candidate.
Further testing would also prove that the time to recover using a
logging technology is constant and is not proportional to the size
of the file system.

CUG 1996 Spring

 Proceedings

193

3.4 Performance Testing

Performance tests consisted mainly of timing throughput
operations and basic file systems functionality such as opening
and closing a file system.

The tool used during the evaluation measured throughputs for
multiple transfer sizes. For each transfer size, the program calcu-
lated the number of transfers required to write an entire file to
disk, write the entire file on disk with as many write() system
calls as necessary, read the entire file and rewrite the same file
(preallocate).

For each of these operations, it recorded the real elapsed time
for the entire transfer and the high resolution real time of each
individual write() and read() system call. The program reported
the environment information, write rates, write - preallocated
rates, read rates and system call times.

The figures compare read, write and pre-allocated write
performances for three file systems evaluated.

The

Read performances

 show that File System A has excel-
lent read performance which is probably due to a very good job
of read-ahead caching. Read ahead caching delivers roughly a
factor of 6 performance boost (compared with disk speed which
is 1 MBytes/Second).

File System B also shows a nice curve but is about 15%
slower than File System A. Although it also performs read-ahead
caching, the algorithm is not as well optimized. In both cases
they do a good job to reach maximum performance fast.

File System C has read performance equivalent to File
System B for large transfers but starts very slow (even slower
than disk speed for 512 bytes transfers).

Write performance

 is very good for File System B. It has a
curve that one can expect. It can achieve this kind of perfor-
mance using write-behind caching. Compared with the read
performance on the previous graph, write performance is just
slightly below read performance. It probably means that File
System B uses the same caching technology for both read and
write operations.

Write performance for File System A is at about disk speed
which shows than it does write through without caching.

TABLE 1.

Operation
File

System A
File

System B
File

System C

fsck without log-
ging(minutes)

1:00.12 0:56.38 N/A

setting up logging 0:4.25 0:1.12 N/A

number of com-
mands

2 1 0

fsck with logging
(minutes)

0:19.63 0:6.54 0:27.01

status PASSED PASSED PASSED

Figure 3 shows that File system B has good

pre-allocated
write performance

 for the same reason as mentioned earlier.
Compared to write performance, pre-allocated write perfor-
mance is a little bit better. The difference is probably due to the
file system overhead to allocate extents in the first case.

File System C takes very good advantage of pre-allocated
writes compared to writes in the previous graph, especially for
small size transfers (less than 8K bytes). It even outperforms File
System B performance which is excellent. However, perfor-
mance drops for larger transfer sizes with a lot of fluctuations.

3.5 Stress Testing

Stress tests were composed of a transaction test and a work-
load generation test.

The

transaction test

 determines the file system behavior in a
multi-user environment. The AIM Multi-users benchmark, Suite

Logging (Journaling) File Systems Read Sequential I/O Performanc e

File System B File System C File System A

Transfer Size In KBytes

 1.
5

 2.
0

 2.
5

 3.
0

 3.
5

 4.
0

 4.
5

 5.
0

 5.
5

 6.
0

 6.
5

 7.
0

 7.
5

 8.
0

 8.
5

 9.
0

 9.
5

 10
.0

 10
.5

 11
.0

 11
.5

 12
.0

 12
.5

 13
.0

 13
.5

 14
.0

 14
.5

 15
.0

 15
.5

 16
.0

 16
.5

 17
.0

 17
.5

 18
.0

 18
.5

 19
.0

 19
.5

 20
.0

 20
.5

 21
.0

 21
.5

 22
.0

 22
.5

 23
.0

 23
.5

 24
.0

 24
.5

Logging (Journaling) File Systems Write Sequential I/O Performance

File System B File System C File System A

Transfer Size In KBytes

 0.
5

 1.
0

 1.
5

 2.
0

 2.
5

 3.
0

 3.
5

 4.
0

 4.
5

 5.
0

 5.
5

 6.
0

 6.
5

 7.
0

 7.
5

 8.
0

 8.
5

 9.
0

 9.
5

 10
.0

 10
.5

 11
.0

 11
.5

 12
.0

 12
.5

 13
.0

 13
.5

 14
.0

 14
.5

 15
.0

 15
.5

 16
.0

 16
.5

 17
.0

 17
.5

 18
.0

 18
.5

 19
.0

 19
.5

 20
.0

 20
.5

 21
.0

 21
.5

 22
.0

 22
.5

 23
.0

 23
.5

 24
.0

 24
.5

 25
.0

 25
.5

 26
.0

26
5

MB
yte

s/S
ec

on
d

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

194

CUG 1996 Spring

 Proceedings

VII, has been used for this test. It is designed to mimic the activ-
ities of a specified system, such as a file server. In this case a
workload contains sync writes, async reads, and block copies as
well other file server’s operations.

 The program starts an increasing number of processes (task)
which perform file server operations pseudo randomly. A weight
is associated with each operation; the heavier the weight is, the
most frequent the operation will happen. The benchmark runs a
series of jobs to determine the system’s cross-over, the point
where the system’s performance becomes less than 1 job per
minute per AIM fileserver load. Peak performance is the
maximum jobs/minute achieved. Sustained performance is the
number of jobs at cross over.

These bars show that File system A can handle a little bit
more transactions than File system B, especially in terms of peak
performance. However, in terms of sustained performance the
difference is minimal between the two file systems. File System
B is better optimized as sustained and peak performance are the
same.

The

workload generation test

 populated a directory with
either a normal, gamma or flat distribution of files. The goal is
to fill a file system with as many files as possible. The objective
was to be able to fill a file system with more than 1 million files.

Logging (Journaling) File Systems Preallocated Write Sequential I/O Performan c

File System B File System C File System A

Transfer Size In KBytes

 0
.5

 1
.0

 1
.5

 2
.0

 2
.5

 3
.0

 3
.5

 4
.0

 4
.5

 5
.0

 5
.5

 6
.0

 6
.5

 7
.0

 7
.5

 8
.0

 8
.5

 9
.0

 9
.5

 1
0.

0
 1

0.
5

 1
1.

0
 1

1.
5

 1
2.

0
 1

2.
5

 1
3.

0
 1

3.
5

 1
4.

0
 1

4.
5

 1
5.

0
 1

5.
5

 1
6.

0
 1

6.
5

 1
7.

0
 1

7.
5

 1
8.

0
 1

8.
5

 1
9.

0
 1

9.
5

 2
0.

0
 2

0.
5

 2
1.

0
 2

1.
5

 2
2.

0
 2

2.
5

 2
3.

0
 2

3.
5

 2
4.

0
 2

4.
5

 2
5.

0
 2

5.
5

 2
6.

0
26

5

M
By

te
s/

Se
co

nd

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

The test was conducted on two file systems (File System A
and File System B). The file system was 4GBytes striped across
4 disks. The maximum number of inodes was 1.98 millions
inodes for File System A and 1.9 millions inodes for File System
B. The test didn’t complete in either cases because of a lack of
available time. About 900,000 files were created in 23:35’ hours
for File System A and about 850.000 inodes allocated in 21:14’
hours for File System B.

Although more inodes were allocated for File System A, File
System B seems to allocate inodes faster. The goal of 1 million
inodes would probably have been achieved if more time was
available.

4 Conclusion

Whether it is from a feature availability point of view or from
a technical point of view, one must conclude that there is no
product that solves all the problems. Each file system evaluated
has strong points and weakness. Each product has been devel-
oped with some priorities in mind and does a good job fulfilling
these requirements.

The next step toward a future file system is to try to integrate
the outside vendor technology into Cray’s environment. Cray
recognizes the strength of its native file system in terms of
performance and is committed to deliver I/O performance.

AIM Suite VII - Sustained and Peak Performance

File System A File System B File System
0.00

5.00

10.00

15.00

20.00

25.00

