

CUG 1996 Spring

 Proceedings

211

NQE Open Scheduling in a Cluster Environment

Janet Clegg

 and

Daryl Coulthart

, Cray Research, Inc.

ABSTRACT:

NQE 3.0 provides a significant improvement to workload scheduling for NQE
customers. This new architecture allows greater flexibility in workload management and forms
the basis for cluster-wide scheduling, parallel execution, and cluster-wide rerun of jobs. The
model is centered around a network-based, SQL database and central scheduler. This paper will
explain the new approach to NQE scheduling and show how customers can replace the NQE
scheduler with a scheduler customized to their own needs.

1 NQE Overview

The Network Queueing Environment (NQE) is a workload
management product that schedules, monitors, and controls the
execution of jobs in complex heterogeneous environments.
NQE provides a consistent user interface across multiple heter-
ogeneous UNIX systems. Users can submit their jobs to the
NQE cluster, specify the resources needed for the job, and not
worry about where the jobs will run. Based on the resources
needed and the resources available in the NQE cluster, NQE
will select an appropriate server, route the job request to that
server, schedule and initiate the job request, and return
STDOUT and STDERR files to the user.

2 NQE Workload Management

The NQE clients submit UNIX user shell scripts from UNIX
systems to the NQE servers. The commands and displays are
identical across all systems, so that users see a uniform environ-
ment and interface regardless of their workstation type. Motif
based X-Window client programs display the status of jobs and
the system load on each NQE server.

NQE contains a job scheduling program to route and
schedule jobs and interactive commands to appropriate servers
in the network cluster. Scheduling and selection is based on
resources requested by the user and policies formulated by the
site. These are policies and schedules implemented in the
Network Load Balancer (NLB) and the NQE scheduler, which
provide status and control of work scheduling, either balancing
the network load and routing jobs to the best available server, or
honoring requests for specific servers and resources.

Job requests may be submitted to the NQE scheduler which
in turn will schedule the job for execution according to the NQE

scheduler policy. Job requests can still be submitted directly to
NQS servers or routed using NLB policies.

NQE’s batch component, the Network Queueing system
(NQS) provides fault tolerance and a rich set of administrative
controls for high-end UNIX servers.

Job dependency gives users the ability to specify criteria
which must be met before a job request will initiate. The most
common application is to run a set of jobs in sequence.

NQE provides cluster-wide status and control of all jobs
though the NQE GUI. All jobs owned by a user are visible
regardless of what system they are on.

The File Transfer Agent (FTA) provides unattended file
transfer across a network using the

ftp

 protocol.
NQE uses FTA or

rcp

 to return job output. Output from jobs
is returned to the location requested by the user or to the current
working directory from which the job request was made.

In addition, both an interactive utility (

ftua

) and a
command line interface (

rft

) are available to initiate file trans-
fers on NQE servers. The command line interface is particularly
attractive when needed in batch job requests. Network
Peer-to-Peer Authorization (NPPA) solves the problem of
needing to supply passwords in job scripts or in .netrc files.

The user interface provides the ability to submit, display,
status, signal, and batch jobs, using a command line interface or
a GUI. The NQE GUI provides a consolidated user interface for
NQE user functions.

3 NQE 3.0 Features

The NQE 3.0 release has the following new features:

• Integrated GUI for building and submitting job scripts, mon-
itoring job status, controlling jobs, and monitoring NQE
system status Copyright © Cray Research Inc. All rights reserved.

212

CUG 1996 Spring

 Proceedings

• Display of FTA file transfer information in the GUI status
displays

• GUI interface to cron, for launching predefined jobs at spe-
cific dates and times

• Ability to modify the scheduling of NQE job requests with
Tcl (Tool Command Language)

• DCE/DFS integration, to provide NQE users with transpar-
ent access to their DFS files, while running NQE job scripts

• Cluster rerun, to automatically rerun jobs on another server
if the execution server goes down

• Extensible collector to gather and display additional system
information easily

• Interactive Load Balancing, to execute interactive UNIX
commands on servers based on scheduling policies defined
in the NLB

• Byte level recovery of FTA file transfers, so that file transfers
are restarted from where they left off, in the event of network
or system failures

• Support of new versions of IRIX, Solaris, and AIX UNIX
operating systems

3.1 NQE Client/Server Model

NQE 3.0 provides a significant improvement to workload
scheduling for NQE customers. This new architecture allows
greater flexibility in workload management and forms the basis
for parallel execution, cluster-wide scheduling, and cluster-wide
rerun of jobs. The model is centered around a client/server SQL
database and a central scheduler. This new NQE scheduler,
available in 3.0, is written in the popular Tcl scripting language.
This new feature allows sites to create a customized scheduler or
to rework NQE’s existing scheduler. For example, sites can elect
to schedule based on NQE 2.0 style NLB policies, in which case
the 3.0 Tcl scheduler calls the NLB policy module. But a site
may instead choose to look at all jobs in the cluster and pick out
a specific one to run first. With NQE 3.0 scheduling, sites now
have the ability to enhance scheduling according to their indi-
vidual needs.

3.2 DCE/DFS Integration

NQE provides the facility to perform DCE authentication at
job initiation if a password is supplied with the

cqsub

command or the

nqe

 GUI. If password validation is not in effect
at the NQE server accepting the job, the password will only be
used for DCE authentication and the usual NQS validation (such
as file validation) will also take place.

If DCE authentication is successful, NQE supports access of
DFS files within the user’s DCE cell. This includes support of
job scripts, job I/O, return of job output, and $HOME directories
in DFS file space.

New DCE authentication will be obtained before restarting a
checkpointed job on UNICOS.

DCE authentication is not required for status, signal, and
delete operations.

3.3 NQE GUI

The

nqe

 command invokes a new graphical user interface
(GUI) that lets users do the following:

• Use the Submit window to open and edit a job script; to save
changes made to a job script; to submit a request to NQE; to
view, segment, delete, or reset the NQE GUI log; and to set
or unset password. The Submit window will set and save
job-related options.

• Use a launching capability to submit a job request periodi-
cally, at specific or repeating intervals.

• Use a Status window to verify the status of requests and FTA
file transfers. Use the Status window also to delete a request,
to send a specified signal to a request, to get a detailed status
of a request, and to set or unset password.

• Obtain context-sensitive help by gliding the mouse cursor
over a menu or field name in a window. A brief description
of the menu or field will appear at the bottom of the display.

• Use the Load window to view a continually, updated display
of the system load for NQE servers in the complex. This data
may be grouped by host or by type of data. Users may also
view data about a specific NQE server.

• Use the Config window to set specific user preferences and
see how variables are currently set.

3.4 Cluster-Wide Job Rerun

If a job has been assigned to an NQE server and that server
has been down for a specified length of time, NQE 3.0 provides
support for rerunning that job request on a different NQE server
in the cluster.

3.5 Interactive Load Balancing

The new ilb feature executes commands on an an NQE server
chosen by the NLB. To use this, enter the ilb command followed
by the command to execute. The NLB is queried to determine
the machine to execute the command. The command is executed
and I/O is connected to the terminal session or to an optional
pipe to another command.

3.6 FTA Enhancements

FTA has been enhanced in NQE 3.0 to provide byte-level
recovery of interrupted file transfers, to display additional data
from the NLB, and to display the status of FTA file transfers in
the

nqe

 GUI.

3.7 Extensible Collector

It is now possible to store dynamic, site-specific information
in the NLB database. This information is periodically sent to the
NLB by each collector process, along with the data that is
normally stored and updated in the NLB. Once the customized
data is in the NLB, it can be used in policies or displays just as
any other NLB data. NQE collects and stores the customized
data, but the site defines, generates, and updates it.

The new

ccollect -C

file name option and the new
NQE_CUSTOM_FILE_LIST variable provide the support for
this feature.

CUG 1996 Spring

 Proceedings

213

3.8 Application Program Interfaces

NQE provides a language callable interface to

cqsub

,

cqdel

, and

cqstatl

. Sites can use these interfaces to provide
customized commands for their users.

4 NQE Architecture

NQE consists of clients and servers. The Master Server is the
NQE server with the consolidated information about workload
and system status in the Network Queueing Environment.

The NQE Clients provide all the necessary commands for
users to submit jobs and monitor the status of their work.

The Master Server matches the incoming workload and prior-
ities to the system load of NQE servers in the cluster, and sched-
ules jobs for the most appropriate NQE server. The selected
NQE server may be the Master Server or an Execution Server.
Jobs may arrive from other NQE servers as well as from Clients.

There may be only one NQE Master Server in an NQE
cluster. The NQE Master Server runs the Network Load
Balancer (NLB), the NQE SQL database, and the NQE sched-
uler. The NLB may be duplicated on other NQE servers, which
may serve as a backup to the NLB if it becomes unavailable. The
Master Server contains both client and server code, and may also
function as a Client or an Execution Server as needed.

NQE Execution Servers collect information about system
load and job status and send this information to the NLB on the
Master Server (as well as to any backup Master Servers). Execu-
tion Servers use NQS, the Network Queueing System, to initiate
job requests and FTA for file transfers. Execution Servers also
contain client commands and may function as a Client as
needed.

5 NQE Open Scheduling

The crux of workload management is scheduling. Many
customer requests for new features revolve around scheduling
needs. Scheduling needs for different sites differ and conflict, to
the extent that Cray Research cannot provide for all these needs
in a timely fashion. Therefore, the solution is to provide an archi-
tecture that allows for easy customization by the individual site.
Additional priorities in developing the new model are the need
to improve cluster support and the need to create a framework
for jobs with parallel execution.

The solution is NQE Open Scheduling. The NQE scheduler
is based on an SQL database and on Tcl (Tool Command
Language). The use of an SQL database provides a standard
interface for examining information in the database. Tcl is a
scripting language similar to other UNIX shell languages, such
as the Bourne Shell (sh), the C Shell (csh), the Korn Shell (ksh)
and Perl. In particular, it provides an extension language to
configure and customize applications.

1

1

Brent Welch, Practical Programming in Tcl and Tk, Prentice Hall PTR, Upper
Saddle River, New Jersey, 1995, p.xxx.

By using Tcl, NQE 3.0 provides a mechanism for sites to
write custom schedulers. There is a testing mechanism that can
be used to test a scheduler before putting it into production. The
model allows the choice of scheduler to be updated dynamically
at any time. This simplifies changing schedulers for nights,
weekends, or holidays.

The new model holds jobs requests in a central location until
they are ready to be initiated. This allows system load to be
examined at the time the job request is ready to execute.

The new model is layered on top of NQS. This preserves the
current NQS environment and investment. It provides a migra-
tion path that allows sites to continue in the old environment
while experimenting with the new one. Workload can be gradu-
ally migrated to the new environment as needed and as work
schedules allow.

6 NQE Distributed Client/Server Model

The new NQE distributed client/server model consists of the
NQE scheduler, the NQE SQL database, a lightweight server
(LWS) paired with NQS on each Execution Server in the cluster
and the NQE monitor.

6.1 NQE SQL database

The NQE SQL database stores information on the global
configuration as well as on all system tasks and job tasks. All
operations are done by updating information in the database and
sending an event to the appropriate system task to read the infor-
mation. Information is stored in system task objects or job task
objects.

For example, all task objects have an attribute called state.
There is one system task object for each LWS task (process).
The state of each LWS system task object tells NQE if NQS is
running on the corresponding execution server. Figure 1 shows
an example of summary information about the LWS system task
objects in the NQE SQL database.

% nqedbmgr select lws
ID CLASS NAME STATE
s1 lws irix Running
s2 lws unicos Running
s3 lws unicosmk Running
s4 lws sunos Running
s5 lws solaris Running
s6 lws hp-ux Running
s7 lws alpha Running
s8 lws aix Running
s9 lws red Exited

%

Figure 1:

NQE SQL Database System Task Objects

6.2 Scheduler

The NQE scheduler examines each job request and sends it to
an Execution Server. It does this by assigning the job task object
to an LWS.

6.3 LWS

There is one LWS system task object and process for each
Execution Server. The LWS runs on the Execution Server and

214

CUG 1996 Spring

 Proceedings

performs remote SQL commands to the NQE SQL database to
learn which job requests have been assigned to it. The LWS
authenticates the user and then submits the job request to NQS.

6.4 Monitor

The NQE monitor checks the heartbeat updates of each of the
system tasks to verify they are still running. If, for example, an
Execution Server goes down, the NQE monitor will notice that
its LWS has not reported in, and will mark the state of that task
as Exited. The monitor will also delete old job tasks objects after
the configured period of time has expired.

7 System Flow

Job requests that are destined for the NQE SQL database and
scheduler are submitted directly to it (

cqsub -d nqedb

).
When a job request first arrives at the NQE SQL database, a job
task object is created to store all information about the request.

The job task object is given a state of New and assigned to the
NQE scheduler. The NQE scheduler accepts the job request by
giving it a state of Pending. Job requests will be in the Pending
state until they are scheduled to run and assigned to an LWS
(light-weight server). When this happens, the job request will
have a state of Scheduled. The LWS on the selected NQE server
will hand the request to NQS to initiate the job and change the
state of the task object to Submitted.

When the job finishes execution, the LWS will give the task
object a state of Completed and re-assign the task back to the
NQE scheduler. The NQE scheduler will then assign it to the
NQE monitor for retention or disposal of the database object.
This has the advantage of keeping information about the job
available for a specified period of time after the job has
completed. The initial configuration is to keep this information
for 24 hours after the task is assigned to the NQE monitor.

If the job fails authentication, it is given a state of Failed. If
the job is aborted with a signal from

cqdel

, it is given a state of
Terminated. In all cases, the LWS assigns the task object back to
the NQE scheduler to determine the next step.

8 Operation

To add a test scheduler to a running system, 1) create the new
system task object in the NQE SQL database, 2) update the
object with the location of the Tcl file containing the scheduler
functions, and 3) start the scheduler task. An example of these
commands is:

nqedbmgr
% create systask scheduler.new
% update scheduler.new {s.schedfile new_sched.tcl}
% nqedbmgr start scheduler.new

In this example, the test scheduler will run simultaneously
with the main scheduler,

scheduler.main

. To submit a job
to the new test scheduler, use the attribute option to indicate the
desired scheduler:

cqsub -la scheduler=new

9 Implementation of a Scheduler

The following NQE-defined scheduler functions, written in
Tcl, may be revised by the local administrator:

• Tinit

The Tinit function is called to initialize the scheduler. It will
be called when the scheduler initially starts up or when it
receives the TINIT event which may be generated with the
nqedbmgr command:

nqedbmgr ask scheduler.main tinit

Use the Tinit function to initialize any needed variables.

• Tpass

The Tpass function is called to select the next job to process
and assign it to an LWS.

The Tpass function is called on startup, on receipt of a
TINIT event, and after any call to the NQE function
sched_post_tpass.

• Tnewowner

The Tnewowner function is called by the LWS and the mon-
itor to increment the number of jobs requests under their
ownership.

• Tentry

The Tentry function is called when the scheduler starts up,
when a new job request is submitted, when a job request
completes, and when a job request fails authentication on a
lightweight server.

Based on the status of the selected job, this function assigns
it to a lightweight server for hand-off to NQS or to the mon-
itor to archive and/or dispose of the job task object describ-
ing the job request.

Use this function to look for Pending, Failed, Aborted, Ter-
minated job requests.

10 Applications

There are many possibilities for customer NQE schedulers.
Many sites have scheduling requirements that are unique to their
site. This section describes a few examples of custom scheduling
applications that can be implemented using the NQE 3.0 sched-
uling feature.

10.1 CEO Scheduler

There are occasions when the normal scheduling needs to be
bypassed and the jobs for a particular user needs to be executed
immediately. This needs to be done regardless of the current
priorities, system utilization, or policies. Often this is for a
specific userid. The NQE scheduler can be altered to check for
special userids and pass those jobs to the light weight server
(LWS) for immediate execution. This can be done by checking
the jobs userid against a list of high priority userids.

CUG 1996 Spring

 Proceedings

215

10.2 Enterprise Work Scheduler

Cray systems are often acquired to run a particular applica-
tion that is essential to the success of the enterprise. These appli-
cations use most of the resources available from a Cray system.
However, there can be idle time available and NQE is used to
schedule additional work to benefit from the performance of a
Cray system. It is still essential that the key application runs and
gets the turnaround it needs. The NQE scheduler can be altered
to check for "Enterprise" work. User defined attributes can be
added when the jobs are submitted and these attributes can be
examined in the scheduler and used as a sorting criteria when
ordering jobs for execution.

10.3 Execution Server Shutdown

NQE environments can be complex and encompass a large
number of execution servers. Occasionally one or more of these
execution servers needs to be taken out of service for hardware
or software maintenance. Often this is a planned and scheduled
activity. If the dates and times of the scheduled outages are
known, NQE could be altered so that jobs that run past the time
of the scheduled outage would not be sent to that execution
server. This can be done by checking the CPU time requested by
the job and testing to see if the ending time would be past the
time of the scheduled outage.

10.4 Historical Accounting Scheduler

NQE records accounting data about the work done on an
execution server. UNICOS systems have extensive accounting
data available for use and reporting. Large-grained system
sharing can be done by summarizing previous days or weeks
system usage from accounting data. This data can be summa-

rized by userid or account id. By sorting usage, an ordered list of
user priorities can be set on a regular basis. The NQE scheduler
can be altered to read the summary file and use it as a sorting
criteria for job ordering.

11 Summary

NQE 3.0 provides significant new functionality. In particular
it addresses key requirements for scheduling and clusters. NQE
3.0 is the base for a new architecture that will be used to transi-
tion from the traditional NQS model to a distributed client/server
model. This model is based on a client/server SQL database.

NQE 3.0 comes with scheduling that provides NQE 2.0 func-
tionality plus a central job database. This central database holds
jobs till they are ready to execute. At the time of execution, jobs
are forwarded to an execution server to run. NQE 3.0 provides a
script language for writing custom schedulers. There is a testing
mechanism that can be used to test a scheduler before putting it
in production. NQE 3.0 schedulers can be updated at any time.
This simplifies changing schedulers for nights, weekends or
holidays.

NQE 3.0 preserves the investment made on-site with the
current NQS and NQE 2.0 structure. NQE 3.0 is layered on top
and preserves the current NQS and NQE 2.0 environment while
providing significant new functionality. The NQE 3.0 architec-
ture will be the basis for parallel job scheduling and parallel job
management. Over time all components of NQS and the current
architecture will be replaced. As new functionality is imple-
mented, the NQS presence will subside.

For a tutorial on writing NQE schedulers, visit Cray on
the World-Wide Web at http://www.cray.com.

