

CUG 1996 Spring

 Proceedings

247

The Gang Scheduler - Timesharing on a Cray T3D

Morris Jette

,

David Storch

, and

Emily Yim

, Lawrence Livermore
National Laboratory, Livermore, California, USA

ABSTRACT:

The Gang Scheduler, under development at the Lawrence Livermore National
Laboratory (LLNL), supports timesharing of the parallel machine resources provided by a 256
processor Cray T3D, developed by Cray Research. The Gang Scheduler combines a preemptive
processor scheduler with the ability to relocate jobs within the pool of available processors.
Jobs are divided into four classes: interactive, production, benchmark (non-swappable), and
standby (low-priority). Each job class has different performance characteristics, including:
maximum time waiting for execution, maximum processor count, minimum execution time
before preemption, and relative priority. The Gang Scheduler simultaneously supports timely
response for interactive computing and long run times for production computing.

Introduction

Most scalable parallel systems available today support the
notion of space sharing system resources among contending
jobs, but do not support the notion of timesharing the entire
parallel machine. The CRAY T3D from Cray Research is no
exception, since its default mode of operation is the allocation
of job partitions from the pool of available processors. These job
partitions are held until the job relinquishes them, effectively
locking out any other use for those processors. With such a
processor allocation mechanism, the computational require-
ments of long-running production jobs directly conflict with
those of interactive code development work. Only a preemptive
processor scheduler could satisfy the requirements of all our
customers.

The Gang Scheduler is a preemptive processor scheduler. It
schedules processors and barrier circuits for all jobs. The Gang
Scheduler allocates processors in such a fashion as to satisfy the
diverse computational requirements of our clients, even when
these computational requirements are incompatible. All jobs are
classified by access requirements:

• Interactive class jobs require responsive service

• Production class jobs require good throughput

• Benchmark class jobs can not be preempted. This includes
jobs initiated with the "debug" flag

• Standby class jobs have low priority and are suitable for
absorbing otherwise idle compute resources

All jobs, except benchmark class jobs, may be preempted to
satisfy the requirements for responsive service and fair distribu-

tion of resources among these jobs. Preempted jobs will have
their state moved to disk and will relinquish their processors.
Jobs chosen for execution will then be allocated processors from
the pool of those available.

Support from Cray Research

The foundation of the Gang Scheduler is the ability to stop a
running job, move its state to disk, later return the job's state into
processors and restart it. Cray Research developed this capa-
bility and integrated it into their UNICOS MAX operating
system. This software permits the job to be restored to the same
or different processors, permitting much greater flexibility in
scheduling processors and much greater efficiency than was
possible in an earlier implementation of the Gang Scheduler
[gorda92, gorda95] on the BBN TC2000 computer.

Job Scheduling Parameters

The Gang Scheduler is designed to support four job classes
with fundamentally different performance characteristics as
described above. These jobs classes are interactive, production,
benchmark, and standby. There are several class dependent
scheduling parameters to achieve the desired performance char-
acteristics.

• Priority: Job classes are prioritized for service

• Wait time: The maximum wait time desired

• Do-not-disturb time multiplier: This parameter is multiplied
by the number of processors to arrive at the do-not-disturb
time, the minimum processor allocation time before pre-
emption

248

CUG 1996 Spring

 Proceedings

• Processor limit: The maximum number of processors which
can be allocated to jobs of this class

The wait time is designed to insure timely responsiveness,
especially for interactive jobs. After a job has waited to be
loaded for the maximum wait time, an attempt will be made to
reserve a block of processors for it. If more than one job has
exceeded its maximum wait time, the job of the highest priority
class which has waited the longest period of time for loading will
be selected to have processors reserved. Unoccupied processors
or processors occupied by jobs having a priority lower or equal
to that of the of job to be loaded are eligible for reservation. An
exception to this rule is processors occupied by benchmark class
jobs, which will not be reserved due to the inability to preempt
them. Jobs occupying the reserved processors will be preempted
when their do-not-disturb time has been exhausted. When the
last of these reserved processors has been made available, the
waiting job will be allocated the reserved processors. The desire
for timely response needs to be balanced against the cost of
moving jobs from their assigned processors onto disk. In order
to prevent job thrashing, a job is assigned processors for a
minimum of its do-not-disturb time before preemption. After a
job's do-not-disturb time has been exceeded the job may be
preempted by any other job, although preference is given to jobs
of higher priority classes and larger jobs. This scheme keeps the
processor torus well packed with high priority class jobs. A job's
do-not-disturb time is computed by multiplying the
do-not-disturb time multiplier for the job's class by the number
of processors. The do-not-disturb time multiplier should be set
to a value substantially larger than the time required to move a
job's state in one processor from memory to disk and back to
memory. This time will vary with the disk configuration. On the
LLNL T3D with 256 processors and 64 megabytes of memory
each, the entire torus can be repacked in about eight minutes.

Several non-class dependent scheduling parameters also exist
to regulate computer-wide resource use.

• Large job size: The minimum number of processors
requested by a job for it to be considered "large"

• Large processor limit: The maximum number of processors
which can be allocated to "large" jobs at any time

• Job processor limit: The maximum number of processors
which can be allocated to any single job

Several sets of the jobs scheduling parameters can be defined
for different hours of the day and job scheduling parameters may
be altered in real time. For example, it may be desirable to
provide a lower level of interactivity at night. The reduced level
job swapping (and reduced time for such idled processors) could
result in improved system throughput. It might also be desirable
to severely restrict processor availability to benchmark class
jobs except at night or on weekends.

These parameters can result in conflicting job scheduling
rules if not set appropriately or if the workload is irregular.
Performance will degrade under such circumstances, but
"reasonable" behavior can be expected with the highest priority

job classes receiving the best performance. The scheduling
parameters currently being used during the daytime on week-
days are:

The time of one year is used in several cases to insure no
preemption or an indefinite wait for some job classes.

Job Scheduling Algorithm

The scheduler first checks for jobs which have waited for
loading longer than their job class' maximum wait time. If there
is more than one such job, a list of these jobs is constructed then
sorted by job class priority and within each priority value by the
time waiting for loading. The processor requirements for each
candidate as a bumper will be compared against the job
processor limit. If the job processor limit can not be satisfied, the
job will no longer be considered a candidate bumper.

If one or more bumper job candidates are found, possible
processor assignments for the jobs are considered. For each
possible processor assignment, a cost is computed. The cost
considers the number of nodes occupied by the potential
bumpees, their relative priority, and how much time remains in
their do-not-disturb time. In no case will a bumper be permitted
to preempt a job class of higher priority or a benchmark class
jobs. If no possible processor assignment for the bumper candi-
date is located, its loading will be deferred. When the first viable
bumper candidate is located, the lowest cost set of processors
will be reserved for its exclusive use and jobs occupying those
processors will be preempted when their do-not-disturb time
have been exhausted. Only one job will be an active bumper at
any point in time. Once a set of processors have been reserved
for a bumper candidate, the reservation of processors for other
bumper candidates will be deferred until the selected bumper has
been loaded. An exception is made only in the case that a higher
priority bumper candidate is identified. For example, an interac-
tive class job could preempt the bump process of a production
class job.

Any processor assigned to a job which has not exceeded its
do-not-disturb time will continue that assignment. An attempt is
then made to load the bumper job into any collection of unas-
signed processors. While a set of processors was reserved for the

Job Class Priority Wait Time

Do-not
Disturb
Time

Processor
Limit

"Foreign" 5 0 Sec 1 Year/PE 256
Interactive 4 0 Sec 10 Sec/PE 256
Benchmark 3 1 Year 1 Year/PE 64
Production 2 30 Min 10Sec/PE 256
Standby 1 1 Year 3 Sec/PE 256

Large Job Size 64 PE
Large Processor Limit 190 PE
Job Processor Limit 256 PE

CUG 1996 Spring

 Proceedings

249

job, those processors may not be the ones actually used if
another compatible set of processors is found available at an
earlier time. Once a bumper has been allocated some set of
processors, the set of processors originally reserved for its
loading, if different, will be made available to other jobs.

Other executable jobs are recorded in a list sorted by job class
priority and within each priority by the time waiting for loading.
Each job in the sorted list is considered for processor assign-
ment. First the limits (job processor limit, large job limit, and job
class limit) are checked to determine if the job can be loaded.
Any job satisfying these limits will have its barrier wire circuit
and processor requirements considered. If the job can have its
requirements met, it will have a barrier wire circuit and proces-
sors assigned. If a specific barrier wire is not requested, one of
those available will be assigned. All four barrier wire circuits are
considered for use on a round-robin basis. More efficient relo-
cation of jobs can be achieved by using all four barrier wire
circuits.

The time required to save the state of a job on disk can be a
matter of several minutes. Given this delay, it is not ideal to
queue the loading of a job until the processors assigned to it are
actually available. Whenever processors are actually made avail-
able, the job scheduler is executed again. This insures that when
processors become available, they are assigned to the most
appropriate jobs then available.

When a newly started job can immediately begin execution in
a variety of possible sets of processor, the position closest to
node 000 is selected. While it may be possible to use the newly
arriving job to fill gaps in processor use elsewhere in the torus,
this algorithm has worked well thus far. We plan to investigate
other algorithms for processor assignment at a later date.

Sharing of Resources

Each user and group is allocated an amount of compute
resources. All jobs compete on an equal basis for resources
within their job class until the job's owner reaches a resource
limit. After reaching that limit, the owner's jobs will be reclassi-
fied as standby. When additional compute resources are made
available, standby class jobs will be restored automatically to
their former class.

Resource allocation and accounting is provided by the
Centralized User Bank (CUB) system. The Gang Scheduler peri-
odically reads the CUB database from disk to determine
resource availability for the owner of each job under its control.

Client Interface

The execution of a user's job is passed through a Gang Sched-
uler interface called "mpexec". This interface is built upon the
CRI default interface, mppexec, and is upwardly compatible
with it. The interface registers the job with the Gang Scheduler
and waits for an assignment of processors and barrier circuit
before continuing. On a heavily utilized computer, this typically
takes a matter of seconds for small numbers of processors and
possibly much longer for large jobs. The only additional argu-

ment to the Gang Scheduler interface is the job class, which is
optional. By default, interactive jobs are assigned to the interac-
tive job class and batch jobs are assigned to the production job
class.

Debugging and Testing

More than one version of the Gang Scheduler can execute
simultaneously. Each version uses independent data and log
files. The user interfaces can contact any of the active versions
by setting the environment variable "GSCHED" to the appro-
priate daemon version number. While the Gang Scheduler can
operate much more efficiently by controlling all jobs, each
version leaves "foreign" jobs undisturbed and schedules the
otherwise unused nodes for jobs under its control. The Gang
Scheduler can be restarted without impact upon the jobs or user
interfaces unless an active transaction request exists.

Testing the Gang Scheduler is fairly simple. Jobs started
through the Gang Scheduler client interface, mpexec, are sched-
uled by the Gang Scheduler. Other jobs are undisturbed. The
Gang Scheduler client interface is made to replace the default
interface, mppexec, when all jobs are to be controlled by the
Gang Scheduler. One should also modify the NQS configuration
in order to permit the execution of a full complement of jobs.
Excess batch jobs will have their state moved to disk when
resources are actually required for interactive jobs.

Gangster Tool

We provide users with an interactive tool, gangster, for
observing the state of the system and controlling some aspects of
their jobs. Gangster communicates with the Gang Scheduler to
determine the state of the machine's processors and individual
jobs. Gangster's three-dimensional node map displays the status
of each node (each node consists of two processing elements on
the T3D). Gangster's job summary reports the state of each job,
including jobs moving between processors and disk (see the
sample display in the appendix). Users can use gangster to
change the class of their own jobs or to explicitly move their
job's state to disk (suspending execution) or make it available for
execution (resume).

Gangster communicates with the Gang Scheduler via sockets
in the "/tmp" directory. A socket with a file name of the form
"gsched#" is used to establish communications, where "#" repre-
sents the Gang Scheduler daemon version number. A second
socket with a file name of the form "user#" is used for commu-
nications with a specific gangster process, where "#" represents
a process ID number. Authentication is provided by checking the
owner of the socket.

Data and Log Files

Data and log files are maintained in the "/usr/spool/gang"
directory. A log of the Gang Scheduler daemons' activities is
maintained in a file with a name of the form "Gang.logFile#",
where "#" represents the Gang Scheduler daemon version
number. Whenever the Gang Scheduler restarts, the former log

250

CUG 1996 Spring

 Proceedings

file is given a new name of the form "GS.lg.#", where "#" repre-
sents the Gang Scheduler daemon version number and the date
and time of its restart. Job state information for the Gang Sched-
uler daemon is maintained in a file with a name of the form
"Gang.data#", where "#" represents the Gang Scheduler daemon
version number. Older job state information is maintained in a
series of files with names of the form "Gang.dataFile#", where
"#" represents the Gang Scheduler daemon version number and
a sequence number.

When the Gang Scheduler is restarted with the "-f" option, it
will recover using the latest job state information. Without the
"-f" option, the Gang Scheduler starts without former job state
information and collects new job state information. Jobs started
under the control of the former Gang Scheduler would then be
classified as "foreign" jobs. Therefore, it is highly desirable to
avoid restarting without the saved job state information.

T3D Configuration

The Gang Scheduler is not designed to recognize T3D
processor pools. All processors should be placed into a single
processor pool available for both interactive and batch jobs. The
Gang Scheduler can more efficiently utilize the processors
without such restrictions on their use. The Gang Scheduler
parameters can be used to allocate the processors to jobs by job
class, if this situation desired. If multiple processor pools are
required, it is feasible to execute an independent Gang Scheduler
daemons to manage each pool. Processor pool allocation is spec-
ified in the file"/etc/config/mppconfig.local".

Sufficient disk space must be allocated to hold the state of
jobs removed from the T3D processors. On LLNL's 256
processor computer with 64 megabytes of storage per processor,
a 86 gigabyte file system has been created expressly for this
purpose, although a subdirectory of an existing file system may
be used.

Administration Tool

The Gang Scheduler loads an initial set of reasonable sched-
uling parameters when started. These scheduling parameters can
be examined and changed in real time by user root with an
administration tool called "gangparms".

Results

Prior to installation of the Gang Scheduler, NQS was config-
ured to leave an adequate number of processors available for
interactive computing. The following table summarizes the orig-
inal NQS processor limits at various times of the day:

Start
Time End Time

User
Limit

Run
Limit

Aggregate
mpp_pe_limit

00:00 04:00 2 8 256 PEs
04:00 18:00 2 8 96 PEs
18:00 24:00 2 8 192 PEs

Individual NQS queues were configured by processor limits
and time limit as shown below:

Note that jobs requiring more than a four hour time limit were
limited to 64 PEs. Also note that substantial compute resources
were sacrificed in order to insure processors for interactive
computing. This was particularly noticeable in the early morning
hours as the mpp_pe_limit drops to 96 at 04:00 in order to insure
the availability of 160 processors for interactive use at 08:00.

Significant changes in the NQS configuration have been
made possible by the Gang Scheduler. Instead of changing the
"mpp_pe_limit" through time to insure adequate resources for
interactive computing, the limit is now kept at 384 PEs, although
even higher values have been used for testing purposes. The
global user limit has been increased to eight and the run limit to
20. User, group and run limits have also been increased on the
complexes and two queues as shown below.

NQS jobs relinquish their processors only as needed, not in
anticipation of interactive work. During periods of heavy use,
this improves our realized throughput substantially while
preserving good interactivity. We also anticipate substantially
increasing the time limit on most queues from four hours,
although this will be delayed until after a graceful shutdown and
restart of the T3D can be accomplished. While interactivity has
decreased slightly due to interference from NQS jobs, even 64
processor interactive jobs normally begin execution within one
minute. This is still quite acceptable to our user community,
especially when accompanied by a substantial increase in real-
ized batch throughput. We also see a few jobs relocated to better
utilize the available processors during periods of heavy use,
especially when jobs requiring 64 or 128 processors exist.

In order to quantify the effect upon system throughput and
interactivity under heavy load, we have tested the Gang Sched-

Queue
Name

User
Limit

Run
Limit

Time
Limit

PE
Limit

Aggregate
mpp pe limit

pe32 1 4 4 Hr 32 128 PEs
pe64 1 3 4 Hr 64 192 PEs
pe64_long 2 2 19 Hr 64 96 PEs
pe128_short 1 4 15 Min 128 128 PEs
pe128 1 1 4 Hr 128 128 PEs
pe256_short 1 1 15 Min 256 256 PEs
pe256 1 1 4 Hr 256 256 PEs

Queue
Name

User
Limit

Run
Limit

Time
Limit

PE
Limit

Aggregate
mpp pe limit

pe32 8 10 4 Hr 32 256 PEs
pe64 2 3 4 Hr 64 192 PEs
pe64_long 2 2 19 Hr 64 96 PEs
pe128_short 1 4 15 Min 128 128 PEs
pe128 1 1 4 Hr 128 128 PEs
pe256_short 1 1 15 Min 256 256 PEs
pe256 1 1 4 Hr 256 256 PEs

CUG 1996 Spring

 Proceedings

251

uler against the standard UNICOS MAX scheduler and the
Distributed Job Manager (DJM). DJM is a preemptive scheduler
developed by the Minnesota Supercomputer Center. DJM has
undergone substantial modification for performance enhance-
ments by Cray analysts at LLNL. All of the DJM code to accom-
plish job swapping is new. The enhanced version of DJM was
used for testing purposes. All three schedulers were tested under
a very heavy load of interactive and NQS jobs typical of those
executed at LLNL. The results are summarized in the table
below. The additional interactivity of DJM and the Gang Sched-
uler come at the cost of processors idled for job swapping,
although movement of some jobs can result in more efficient
packing of the processor torus and a net increase in throughput.
Note that the interactive execution time is not an absolute
measure of responsiveness, but the time required to execute the
benchmark workload.

It should be noted that the Gang Scheduler results are based
upon a version which is still under development and in the early
stages of tuning. The Gang Scheduler and DJM do give some
indication as to the additional throughput and interactivity
achievable through job preemption on a massively parallel
computer.

The best measure of success is probably actual throughput
achieved. While utilization is quite low on weekend, the
improvement in throughput at other times has dramatically
improved with preemptive schedulers. Current utilization on
weekends is typically about ten percent, while utilization during
normal work hours with a preemptive scheduler exceeds 90

NQS Batch Benchmark
Execution Time

UNICOS MAX 3327 Sec
Distributed Job Manager 2848 Sec
Gang Scheduler 2950 Sec

Interactive and NQS Batch Benchmark
Interactive
Execution

Time

NQS Batch
Execution

Time

Total
Execution

Time

UNICOS
MAX 3553 Sec 3347 Sec 3553 Sec
Distributed
Job Manager 2339 Sec 3248 Sec 3248 Sec
Gang
Scheduler 2797 Sec 3565 Sec 3565 Sec

percent. The table below summaries utilization of processor
resources over the course of several entire weeks.

For the period recorded above, the percent utilization realized
by the three schedulers tested were:

Future Development

The most important work being planned is the ability to
gracefully shutdown the T3D, including the Cray YMP
front-end, and restart the computers to recover the running jobs.
Currently we use the Gang Scheduler to explicitly roll out jobs
prior to a restart of the T3D and explicitly roll the jobs back later.
The UNICOS code to permit job recovery after a restart of the
YMP front-end will soon be available. Many of the T3D jobs
last for a matter of hours, so their recovery will be valuable.

We have begun to develop an X window based version of
gangster to replace the curses based version described above.
The X window based version will provide more flexibility in
representation of the processor, which is particularly important
for Cray T3D computers having different numbers of proces-
sors.

The CUB resource allocation and accounting system is being
replaced by the Distributed Production Control System (DPCS).
DPCS controls job flow by changing a job's nice value up or
down. The Gang Scheduler will be modified to use the standby
job class for jobs having a high nice value. This will integrate
well into some other accounting systems.

While the Gang Scheduler manages the currently active jobs
well, the NQS batch system selects the jobs to be started. It
would be desirable to integrate the Gang Scheduler with NQS in
order to more efficiently schedule all available jobs.

Additional experimentation is also planned in the scheduling
algorithm and its parameters to better balance interactivity and
throughput requirements.

Week Ending
Percent

Utilization Scheduler in Use

01/07/96 23.2 UNICOS MAX
01/14/96 34.8 UNICOS MAX
01/21/96 24.1 UNICOS MAX
01/28/96 32.5 UNICOS MAX
02/04/96 40.2 DJM
02/11/96 39.1 DJM
02/18/96 41.2 DJM
02/25/96 36.3 DJM
03/03/96 34.4 DJM
03/10/96 53.7 Gang
03/17/96 41.3 Gang
03/24/96 41.0 Gang

UNICOS MAX 28.6
DJM 38.2
Gang 45.0

252

CUG 1996 Spring

 Proceedings

Availability

The Gang Scheduler is a collaborative effort between Cray
Research Inc. and Lawrence Livermore National Laboratory. It
is available for use only on CRAY T3D computers. Its avail-
ability to others is presently under negotiation.

For additional information contact Moe Jette, at telephone
number 510-423-4856 or email jette@llnl.gov.

Acknowledgements

This work would have not been possible without the support
of Cray Research and its development of code in UNICOS MAX
to save and restore the state of running jobs. We would also like
to acknowledge the assistance of local Cray analysts Scott
Emery, Kevin Lind and Steve Luzmoor.

References

[gorda92] Gang Scheduling a Parallel Machine, Brent C. Gorda and Eugene D.
Brooks III, Conference on Programming Environments for Parallel Comput-
ing, April 1992.

[gorda95] Time Sharing Massively Parallel Machines, Brent Gorda and Rich
Wolski, International Conference on Parallel Processing, August 1995.

This document is available on the World Wide Web at the
address

"http://www.nersc.gov/doc/gang/gang.sched.html"

Sample Gangster Display

This sample gangster display identifies jobs in the system and
assigned processors. The node map is on the left. A dot or letter
denotes each node (two processing elements on the T3D): a dot
indicates the node is not in use, a letter designates the job
currently occupying that node. On the right is a summary of all
jobs. The W shows the barrier wire. The H:MM field shows the
total execute time. The ST field reports the job's state:

 i = swapping in

 N = new job, not assigned nodes or barrier wire

 o = swapping out

 O = swapped out

 R = running

 S = suspended

W = waiting job, assigned nodes and barrier wire

Node number 000 is in the upper left corner of the lowest
plane. The "X" axis extends downward within a plane. The "Y"
axis extends up, with one "Y" value in each plane. The "Z" axis
extends to the right. This orientation was selected for ease of
display for a 256 processor T3D configuration. The diagram
below shows a typical weekday gangster output.

