

CUG 1996 Spring

 Proceedings

289

Faster Libraries for Creating Network-Portable
Self-Describing Datasets

Jeffery A. Kuehn

, National Center for Atmospheric Research,
Scientific Computing Division, Boulder, Colorado

ABSTRACT:

NetCDF is a self-describing network-portable data format library. While the
library provides a great deal of convenience to scientists working in heterogeneous computing
networks for both portability and encapsulation, it has historically been impractically slow for
most supercomputer applications. This paper will describe a project to improve the perfor-
mance of this library. The results are generally applicable to all such I/O libraries.

Introduction

At a time in the not too distant past, it was not unusual for a
person to have but one computer to serve as a resource for all
stages of a computational project, but things changed. Now,
code is developed on desktop workstations and run on high
performance compute engines to produce volumes of data best
studied through visualization on yet another computer. Key
machines are upgraded or replaced frequently. Output formats
are specific to an individual application and often documented
only in "read-me" files which become out of date or are simply
lost over time. Tools written to process the data output by one
program are useless for the output of another, requiring data
filters to be written to allow applications to share data. Add to
this the incompatibilities of numerical format between the
various machines, 32 bit, 64 bit, IEEE standard, and Cray's
proprietary format, and the picture grows grim indeed.

A dataset which manages to capture all of the information
about itself and encapsulate the data in a format which will
survive transitions from one machine to another can address
many of these problems. Several such formats exist, however
they have historically been much slower to use than language
based I/O libraries. This paper will demonstrate that this does
not have to be the case. Self-describing, network-portable
datasets can be accessed as efficiently as other datasets with
appropriate modifications to the associated libraries.

Background on Self-Describing Datasets

The heart of self-describing data is marriage of a format and
an access library. The format includes both the data and its asso-
ciated meta-data. The meta-data consists of information about
the contents, structure, location, and data types of the variables,

which when coupled with the library, allows one to access the
data without knowing anything about the actual representation
of the data or the layout of the file. This means that the data can
also be transparently stored within the file in a network portable
format, facilitating sharing the data across a heterogeneous
computing environment.

Self-describing data has several potential advantages over
non-self-describing data. Most of the libraries implementing
such file formats take advantage of most if not all of the
following:

• The data is processor independent. Because the user is insu-
lated from the actual representation of the data in the file, the
access library can transparently convert data in the file to the
processor's native data format.

• The file format is language independent. Fortran files can be
notoriously difficult to read in C without access libraries to
assist in the process and files written from C programs are
typically not readable from Fortran without similar assis-
tance. It is little additional effort for the developer of an
access library to insure that the library call interface is avail-
able in more than one language.

• The meta-data is captured with the file. This precludes the
need for "read-me" files and archived copies of the programs
which wrote the files to document the contents and structure
of the files.

• The file format and structure are hidden from the end user,
while the library handles the details of associating a series of
bits in the file with an I/O request.

• The data is referenced by name, rather than by position in
the file. This means that an end user doesn't perform any

290

CUG 1996 Spring

 Proceedings

indexing computations within their application. Instead they
simply request the data field they need by name and the
library examines the meta-data in the file to locate and con-
vert the data on behalf of the user.

• Simpler access and conversion facilitate data sharing. By
minimizing the headaches associated with trying to read
"foreign" files on machines with poor support for such oper-
ations, these libraries promote sharing of data between dif-
ferent computers.

• Translation errors are reduced. Because positioning, transfer,
translation, and interpretation are handled solely within the
access library, the chance of errors in reading and manipulat-
ing the file are minimized.

• The data can be accessed as a series of "hyper-slabs" to
extract only the information necessary for an operation.
While most of these libraries are not DBMS's, simple
sub-setting operations can be performed without the over-
head of a DBMS.

However, these libraries are not without problems. The
increases in access simplicity are gained by requiring the creator
of a self-describing file to describe the format of the file to the
access library before any data is written. Additionally, these
libraries have suffered from very poor performance in the past.
However, the performance problems can be addressed while
retaining the other advantages of such formats.

One example of such a library is "netCDF" written by Russ
Rew, Glenn Davis, and Steve Emmerson of the Unidata Program
Center at the University Corporation for Atmospheric Research
under NSF support. The author of this paper performed perfor-
mance analysis and optimization of the netCDF library which
has since been rolled back into the Unidata netCDF release.
NetCDF is available via anonymous FTP at unidata.ucar.edu.
The netCDF library will be used as a case study example in
discussing performance improvements through the remainder of
this paper.

Structure of Self-Describing Files

While each self-describing data format is unique, most of
them share a similar overall structure. They contain a header
section followed by two data sections which serve slightly
different purposes. The first data section contains all of those
data structures which the user has specified will occur only once
per file. The data in this section is referred to in the netCDF
library as "non-record data" and includes all of the data which
does not have an unlimited array dimension. The second data
section contains those data structures which the user has speci-
fied will appear in repeated groups throughout the remainder of
the file. The data in the second data section is referred to as
"record data" in the netCDF library with a record being
composed of the set of variables which are written repeatedly.
Record data is typically used for implementing arrays with an
unlimited dimension, typically the time dimension for numerical
simulations. Thus, if a program was to save a data structure

describing the geometry of a fixed grid on which the computa-
tions were to occur, this might be saved in the first data section
of the file. Whereas the same program might save the state vari-
ables of the computation at each of the grid points for each
time-step computed into the second data section.

The file header also bears further description. In addition to
information about the file, such as, textual comments, offsets for
each of the data sections, and size of the records in the second
data section, the file header contains the meta-data for each vari-
able saved into the file. The meta-data includes:

• The name of the variable.

• The data type (floating point, integer, etc.) of the variable.

• The number of elements associated with the variable. (i.e..
array dimensions)

• Any textual comments the user wishes to associate with the
variable. This is particularly useful for operational or experi-
mental data in that it allows a user to note irregularities in the
data collection process.

• Positioning information for the variable, in particular,
whether it falls into the first or second data section and fur-
thermore, where within the first data section or where within
a record it falls.

Library Structure

As with the file formats, most of the associated libraries share
a similar structure, at least in the coarse sense. They split into
four layers: user interface, structure management, type conver-
sion, and I/O layers, each with distinct responsibilities. This
discussion will focus only on three of the layers, the two bottom
layers where optimization work was performed and the user
interface layer.

The user interface layer is divided into two phases. The first
phase, or definition phase, contains those routines which are
used to create the file header by describing the data structures to
be written into the file. During this phase, the file is opened and
the user-provided global meta-data as well as the user-provided
meta-data for each variable are described to the library via func-
tion calls. For complex files, this can be a very laborious process.
Upon completing the definition phase, the remainder of the
meta-data is computed and the header is written. The meta-data
is typically also kept in memory to speed later operations. The
second phase of the user interface is the manipulation phase, in
which data is actually written to (or read from) the file. It is
worth noting that for most such libraries, the header is both read
and written during the definition phase, but is only read and
largely untouched during the manipulation phase.

The type conversion layer and the I/O buffering layer are the
only two layers which are required to handle the data being
passed into or out of the file. Both of the upper layers need only
handle the meta-data. During the definition phase, the meta-data
passes through the lower layers. As suggested by the names for
these layers provided above, they are responsible for performing
any necessary type conversion between the native format for a

CUG 1996 Spring

 Proceedings

291

processor and the file format, and for managing any I/O buff-
ering which is to be performed. Because these two layers actu-
ally handle the user-data, they will typically account for the bulk
of the cost of using such a library for most large scientific appli-
cations. By comparison, the meta-data operations are relatively
lightweight in such applications where the data is typically
represented in large arrays.

Pre-optimization Performance of the netCDF
Library

Prior to the optimization project, the netCDF library was far
too expensive to use on Cray supercomputers in comparison
with, for instance, the plain old Fortran I/O libraries. Anecdotal
comments and small tests showed that writing application data
through netCDF was between 20 and 3000 times slower than
writing the same application data through tuned Fortran I/O
statements. The range of performance is dependent on the appli-
cation's I/O patterns. The inefficiencies were apparent in user
CPU time, system CPU time, and I/O wait time. Some applica-
tions also saw the total amount of data transferred balloon when
using netCDF.

In cases where an application was experiencing performance
problems with netCDF, attempts were made to extract the I/O
code from the program. Several pathological cases were identi-
fied and reduced to a few small test codes.

Copies of the libraries instrumented with Flowtrace were
built and tests were run to localize the performance bottlenecks
in the code. The performance tests first identified that most of
the library's user CPU effort was appearing in the type conver-
sion layer.

Procstat was also used extensively and indicated that the I/O
buffering layer was not managing the disk accesses well for user
interface layer read and write requests which translated to
non-sequential access of the actual data file. In cases where the
user-layer read and write requests did map to sequential access
of the underlying datafile, the I/O buffering was adequate.

Competing Goals

Certainly the primary goal of this project was to produce a
library which performed better in a general sense than the orig-
inal; however, this goal was balanced by the need to keep the
changes unobtrusive. Optimizations which impacted the user
interface or previous behavior of the library were not to be
considered acceptable. Furthermore, one of the primary advan-
tages to libraries such as netCDF is its opaqueness. The user is
not required to have knowledge of the details of the file layout.
The optimizations should not require an applications
programmer to know anymore about the internal workings of the
netCDF library. On this alone, several strategies for addressing
the I/O buffering problems were rejected.

The Type Conversion Bottleneck

The high user CPU time in the type conversion layer was
tracked to netCDF's use of XDR, an external data representation

library originally designed by Sun Microsystems. This bottle-
neck boiled down to a simple problem of scalar code. The XDR
interface routines used converted one data element per subrou-
tine call, thus an array of a million elements required a million
subroutine calls to convert the data and write it out.

This was fixed by providing internal netCDF routines which
converted blocks of data using CRI's CRAY2IEG() and
IEG2CRAY() routines between the application's arrays and a 32
kiloword conversion buffer. The actual file I/O was performed
from this conversion buffer down to the I/O buffering layer. The
size of the conversion buffer was determined by testing
CRAY2IEG() and IEG2CRAY() for several different input
array sizes. Timings indicated that the number of elements
converted per CPU second rose quickly at first, then flattened
out to a much slower rise. The performance "knee" for these
routines appeared just above 16 kilowords and at 32 kilowords
the routines appeared to be running very close to best possible
speed. This behavior is typical of optimizations which involve
vectorizing code which was previously scalar.

The Buffering Bottleneck

The high system and I/O wait times, as well as the data
transfer inflation were attacked next. The problem lay in the
implementation of the I/O buffering layer in the original library.
The original scheme used a single 32 kiloword I/O buffer
managed by the netCDF library, sitting atop a POSIX
read(2)/write(2) interface. The transfers bypassed the kernel's
buffer cache by opening the file with the O_RAW flag. This was
adequate, though not optimal, when the requests at the user inter-
face level mapped to sequential access to the file. However,
non-sequential access from large applications to large files
generally resulted in thrashing the I/O buffer, causing high
system time, high I/O wait time, and additional data transfer.

The first attempt at improving this was to simply increase the
size of the I/O buffer. Sizes up to two megawords were tested
and in many cases worked well. But as is often the case, the
application deemed most important to us was also the most
pathological in its access patterns and even a very large buffer
was not sufficient to accommodate its behavior. Several other
approaches were considered, but rejected as they were only effi-
cient for certain access patterns and shielding the applications
programmer from the file layout details was a high priority.

It was decided that the only remaining approach would be to
replace the single buffer scheme with one that managed multiple
buffers as a cache. Shortly before implementing this, it was
suggested by Don Lee (formerly of CRI) at the Spring 1995
CUG in Denver, that CRI's FFIO library might be sufficient to
the task. As a test, the original netCDF I/O layer was replaced by
an interface layer which called FFIO. An environment variable
was added to allow the FFIO library to be configured for
different caching schemes, and testing began. The results of the
tests were quite good (below) and the flexibility of FFIO's buff-
ering was impressive. Because the primary interest was in the
application performance on CRI platforms, it was decided that

292

CUG 1996 Spring

 Proceedings

the FFIO code would be left in place and that implementation of
caching within netCDF would be deferred on other platforms.

General Performance Results

The modified netCDF library was then tested in several key
applications and the results were quite impressive. In each of the
cases, the author was able to achieve I/O speeds within 5-10% of
tuned Fortran I/O, for comparable I/O requests. Comparing the
resulting I/O speeds against raw device speeds, it was found that
the new netCDF code, with some buffer tuning, could easily
achieve 80-90% of the advertised raw disk device speeds.

Application Tuning Strategies

A primary goal in choosing the optimizations was to shield
the user from the details of the netCDF file format. After all, if
high performance could only be achieved by understanding all
the ugly details of the file layout, netCDF would lose its advan-
tage of simplicity. Furthermore, while an environment variable
(NETCDF_FFIOSPEC) had been specifically created for the
purpose of tuning application I/O performance by configuring
the library's buffering scheme, the author intended that most
users should not be required to perform this exercise, and that
those users who did find it necessary should be able to tune
netCDF to their needs without understanding the details of the
file layout or the internals of how netCDF manages their data.

As a first step, several buffering strategies were investigated
in hopes of finding a default strategy which would provide
adequate performance for most applications using the library.
After trials with several sample codes, a simple scheme of an
asynchronous double buffer layer in memory was chosen, not
because it was the best choice for any given code, but rather
because it was not the worst for any of the test cases. The default
environment variable setting which produces this configuration
within the library is:

NETCDF_FFIOSPEC=bufa:336:2

The 336 block size of each buffer was chosen as a compro-
mise, being the least common multiple of the track sizes for two
of the CRI disk drive products in common use at NCAR. The
behavior of the "bufa" layer is described in more detail in CRI's
I/O tuning guide for applications.

A more difficult problem was to develop application level
rules of thumb to assist a user trying to tune library performance
for a specific code. While it is straightforward to develop a
tuning strategy if one understands the internal details of the
library, it was hoped that there might be rules of thumb that
could be applied based on how an application called the library
interface. The rules of thumb are targeted towards smoothing out
the I/O stream so that by the time the requests actually reach the
disk device, they appear large and sequential. Memory and SSD
layers are interposed as necessary with a memory layer inter-
cepting the smallest, most random requests and the SSD layer
accepting intermediate sized random requests.

As a starting point, one should first try to characterize the
"best" case and "worst" case access patterns of the application.
Most of the test programs tended to access the library in spurts,
rather than a continuous dribble. Some programs would write
out large arrays in slices while others were able to write entire
arrays at once. Finally, while most applications wrote the data
out in the same order it was defined to the library, some applica-
tions could not.

For those applications which were writing whole arrays in the
order which they were defined to the library, the "bufa" scheme
works quite well. The page size for a single buffer should be set
to an integer multiple of the size of the data in a netCDF record.
The size of the netCDF record can be computed by summing the
number of words of data of all of the variables and arrays defined
as "record-data" to the netCDF library, then dividing that
number by 1024 and rounding up to the nearest integer.

Applications which write partial arrays or write arrays out of
order will more likely benefit from a "cache" (synchronous) or
"cachea" (asynchronous) caching strategy. In these cases, good
performance is typically achieved by setting the individual cache
page size to roughly the size of an individual transfer, and setting
the number of cache pages to some multiple of the number of
netCDF record variables. In severe cases a multi-level cache
may be desirable with a small-page cache in memory and a
large-page cache on the SSD. The case study below will
examine such a code.

A Case Study

The case study problem is a large multi-tasked atmospheric
model. This code divides the atmosphere into latitude slices
which are computed in parallel. The variables of each latitude
slice, upon completion of a time-step, are written to a history
file. At each time-step, the sum of the data written for each lati-
tude slice forms a complete 3D state. NetCDF was used to reor-
ganize the latitude slices of each variable into complete 3D fields
of all latitudes. Each history record was comprised of over 60
variables written out at each time step. The size on disk of a lati-
tude slice across an individual variable is roughly 15KW and the
size of a complete time-step record is less than 2MW. Because
the code is multi-tasked across latitude loops, the latitude slices
are written out in a random order within a time-step. The
time-steps (which are set up as netCDF records with time as the
unlimited dimension) are, of course, in sequential order. This has
the effect at the lowest level of creating a band of random
accesses which progresses forward through the file. With the
unoptimized version of the library, this code created its output
files on DD-49 disk devices at roughly 0.15MB/second, or
slightly over 1% of the device's advertised speed.

For this code, a two level cache was chosen, with the first
level in memory and the second level on the SSD. The SSD
cache was chosen to be asynchronous as well. The memory
cache was set up with cache pages large enough to hold a latitude
slice of a single variable, 29 blocks. The number of pages was
chosen to be 141, a little more than double the number of vari-

CUG 1996 Spring

 Proceedings

293

ables per time-step history record. The SSD cache page size was
chosen to be 2MW, large enough to an entire assembled
time-step record and the cache is configured to hold 4 pages,
with the rationale being that this would allow one page being
written, one page being read, and a worst case of a time-step
record spanning the remaining two pages. The environment vari-
able used to describe this would be:

NETCDF_FFIOSPEC=cache:29:141,eie.sds:4096:4:1

Note that in this line, "eie" indicating the CRI applications
group's EIE library was used instead of "cachea" from the FFIO
library. This was required as a result of a bug in FFIO that is
fixed as of UNICOS 9.0. However, it should also be pointed out
that EIE is useful in its own right because of the "event" layer it
provides. The "event" layer allows one to place instrumentation
between two FFIO or EIE layers to receive detailed information
on transaction counts, timing, and average transfer size between
the layers and is thus remarkably useful as a tool for tuning
applications.

This cache configuration allows the application to create its
history files in netCDF format very efficiently. A history file just
over 200MB in size requires slightly less than 20 wall clock
seconds to create on a busy Y-MP system. Thus, a rough esti-
mate of the I/O rate would be ~10MB/second which compares
well against the 12MB/second best speed quoted for the DD-49
disk devices attached to the system on which the test was run.
This represents a 60-fold improvement in performance over the
original library.

Summary

Libraries such as netCDF can provide a fast efficient means
of creating self-describing datasets which can be used on any
machine in a heterogeneous computing environment. These
libraries have several other benefits including language indepen-
dence, encapsulation of meta-data, reduction in translation
errors, and facilitation of sharing data between applications such
as graphics packages which are able to read these self-describing
formats. Their historical performance deficiencies are not
intrinsic to the task, but rather can be avoided entirely by
applying common optimization techniques.

Acknowledgments

The National Center for Atmospheric Research is managed
by the University Corporation for Atmospheric Research and
sponsored by the National Science Foundation.

The netCDF software was written by Russ Rew, Glenn Davis,
and Steve Emmerson of the Unidata Program Center which is
managed by the University Corporation for Atmospheric
Research and sponsored by the National Science Foundation.
The netCDF software is available at no cost via anonymous FTP
at unidata.ucar.edu (128.117.140.3).

The author also wishes to express thanks for suggestions,
support, and testing from the following: Don Lee (formerly of
CRI), the CRI Applications Group for their work on the EIE
library, and the scientists and programmers of the Climate and
Global Dynamics Division at the National Center for Atmo-
spheric Research.

