

294

CUG 1996 Spring

 Proceedings

PVP SHMEM and PVM Performance Issues Using MPT

Enrique Lopez-Pineda

, Benchmarking Services, Cray Research,
Inc., Eagan, Minnesota USA

ABSTRACT:

An overview of usage and performance issues concerning the porting of CRAY
T3D (shared-memory/PVM) and network (PVM) parallel aplication codes onto Parallel-Vector
Processor (PVP) machines using MPT - a message passing toolkit which has been developed to
port such codes to a CRAY PVP machine.

Introduction

Parallel Applications

Parallel applications written for distributed-memory
computers often need to be ported to a Cray Research
Parallel-Vector-Processor (PVP) platform. These applications
are typically developed using message passing with PVM
(non-network or network PVM) or, when coming from the Cray
T3D, using logically shared data passing with the Shared
Memory library (SHMEM). It is desirable to have this porting
done with a minimum amount of effort. Furthermore, it is
important that this effort maximizes the machine’s resources.

Message Passing Toolkit

The Message Passing Toolkit (MPT) was developed by Cray
Research to consolidate support for message and data passing
into a single software package. It allows the running of parallel
applications written in PVM, SHMEM (as well as in Message
Passing Interface - MPI) on a shared-memory platform while
maintaining the original code’s structure and focus. MPT
provides optimized implementations of its components, and is
designed to preserve the distributed memory concept and usage,
thus allowing the user to run a parallel code on a PVP system
with minimal effort.

User Issues

In order to utilize MPT, there are a couple of porting issues
which must be addressed. However, most importantly, there are
performance issues which should be understood in order to eval-
uate the overall performance of a particular code. This paper
presents some of these issues in order to provide a better under-
standing of the SHMEM and PVM components of MPT.

MPT Usage

Cray Programming Environment

The MPT package, as part of the Cray Programming Envi-
ronment, contains three main components which allow the capa-
bility of message and data passing models to work on PVP
systems: PVM, libsma (SHMEM), and MPI. The Cray
Programming Environment uses the Modules package to
combine compiler and application tools into an integrated envi-
ronment. The integration of MPT onto the Cray Programming
Environment is accomplished through a single module load
once the Programming Environment is loaded. By doing this
module load, the user is ready to compile, load and execute a
parallel program.

Getting Started

Once MPT is loaded into the Cray Programming Environ-
ment, there are a couple of code adaptations which must be
done. First, a call to the routine

start_pes

 near the beginning of
the program must be added. This call starts a processing
element (PE) task as an additional multitasked task. The call
requires one argument to indicate how many PE’s to start. The
number of PE’s can be dynamically set by using the environ-
ment variable NPES and setting the argument to 0.

Another coding issue is data locality; the programmer must
insure that data is allocated as private to each task since data and
message passing models precisely work with the assumption
that all data is indeed private. This is in contrast to shared
memory multitasking, where global and static data is shared
among all tasks. When compiling with Fortran 90 (f90), this can
be accomplished through the command line by using the
‘-ataskcommon’ option (when using cc with C programs use
‘-htaskprivate’). When compiling with Fortran 77 (cf77), one
must change all common blocks to taskcommon.

When using PVM, one can use the stand-alone version
(SPMD model) which does not require the PVM daemon toCopyright © Cray Research Inc. All rights reserved.

CUG 1996 Spring

 Proceedings

295

execute. This implies that the master and slave programs used
in network PVM should be converted to a single SPMD execut-
able, replacing the call to

pvm_spawn

 with a call to

start_pes

.
However, MPT also recognizes

pvm_spawn

 so network PVM
can also be run.

Running with MPT

After a program has been modified, compilation is trivially
done as usual, depending on the PVP compiler of choice (f90,
cf77, cc). Hence, execution is done simply by typing the name
of the executable. One must only remember to set the environ-
ment variable NPES to the number of tasks desired (MPT allows
a maximum of 32 tasks).

It is important to remember that these PE tasks from MPT are
still multitasked PVP tasks and not PE MPP tasks. This simply
implies that an MPT run may not necessarily execute all PE tasks
in parallel (especially true if the number of PE tasks is greater
than the number of CPUs available on the system).

Performance Evaluation

Performance Issues

The implementation of a message or data passing model on a
PVP system allows for the development of parallel applications
on a platform which can enhance the performance of certain
codes (as are, for instance, highly vectorized parallel codes).
The total performance, however, will highly depend on how fast
the data is passed/sent, and how efficiently synchronization of
tasks is handled.

Measurements of the latency, bandwidth, barrier perfor-
mance, and global communications are essential for a proper
evaluation of the expected performance of MPT. Actual code
computations are extraneous to MPT and thus should be dealt
with according to other measures (as are Mflop/s, etc.).

In the following sections, tests to determine measurements
were done on a CRAY T3D with 128 PE’s and on a CRAY J90
with 32 CPU’s.

Latency and Bandwidth

The startup time for a message, the latency, and the sustain-
able data transfer rate, the bandwidth, are the most crucial
elements of any data or message passing model. A short latency
is necessary to insure high efficiency of even small data packets.
A high bandwidth rate allows for fast transfer of data.

On the CRAY T3D, hardware and network elements allow
for low latency and high bandwidth. Since on a PVP system
using MPT network transfers are simply memory to memory
access, one would expect higher bandwidth but a higher latency.

In order to measure latency and bandwidth, a point-to-point
communications program was used. By sending messages of
various sizes back and forth between two PE’s, the asymptotic
rate of transfer is tracked and the latency determined.

Table 1 shows the latency and asymptotic bandwidth results
for this measurement.

With MPT we observe that the bandwidth rate is indeed quite
high. However, because of the higher latency, the higher band-
width requires larger data packets. The PVM and SHMEM
components of MPT should achieve similar peak bandwidths on
a PVP system. However, the timings for the tests used here
include the time for packing and unpacking of data by PVM
sends and receives. Thus, the bandwidth rates appear lower in
the measurements. Also, these tests include a couple of neces-
sary barriers hence increasing the latency of MPT. Finally, the
T3D achieved better transfer rates for smaller packets when
comparing corresponding libraries.

Barriers

Task synchronization through barriers is a necessary mecha-
nism to insure proper functionality of data and message passing
applications. PE tasks wait at a barrier in the code until all PE’s
reach the barrier. The ability of a platform to handle barriers
quickly is essential to guarantee efficient performance of a
parallel application.

In order to measure the barrier synchronization rate, a test
was used with multiple barriers. This test was repeated for
various PE’s. Increasing the number of PE’s clearly increases
barrier time.

Table 2 shows the barrier time and million barrier rate per
second (Mbarr/s).

The barrier for MPT uses the default batch system barrier
which relies on the routine

barsync

 for queueing up waiting

Table 1. Latency and Bandwidth Rates

MPT Performance

System Library
Latency
(µ secs)

Bandwidth
(Mbytes/s)

CRAY T3D PVM 230 26
SHMEM 2 130

CRAY J90 PVM 450 340
SHMEM 15 700

Table 2. Barrier Rates

MPT Performance

System
No.
PE’s

Barrier Time
(µ-secs)

Barrier Rate
(Mbarr/s)

CRAY T3D 2 0.65 1.538
4 0.67 1.483
8 0.72 1.398

16 0.74 1.353
CRAY J90 2 7.6 0.130

4 10.6 0.094
8 27.0 0.037

16 46.6 0.021

296

CUG 1996 Spring

 Proceedings

tasks. This works best for a heavily loaded system.

However, a
fetch-and-increment barrier using registers performs an order of
magnitude better, and is expected to be implemented on a future
release of MPT. On the T3D, barrier time increases logarithmi-
cally with the number of PE’s while with MPT barrier time
increased at approximately the same rate as the number of PE’s.
Given that the CRAY T3D has special hardware mechanisms for
fast barriers, while MPT relies on software to perform the barrier
synchronization, this is no surprise. However, this is an indica-
tion that barriers should be kept to a minimum.

Global Communications

A set of global reduction functions was used to measure
overall global communication performance. These functions
were designed to perform a specific one word reduction on all
PE’s by doing an all-put, all-get from the master PE (PE 0). This
type of reductions are typical of library routines used on
massively parallel systems. The tests used do all the communi-
cation using SHMEM routines.

The measurements shown on Table 3 correspond to functions
which perform a global sum (GSUM), find the global maximum
(GMAX), and perform global logical AND (GLAND).

These results again reflect the special hardware latency
hiding and synchronization mechanisms of the CRAY T3D.
However, the CRAY J90 does not really lag behind too much

MPT Performance

System PE’s
GSUM

(millisecs)
GMAX

(millisecs)
GLAND

(millisecs)
CRAY T3D 2 0.027 0.012 0.008

4 0.027 0.014 0.010
8 0.030 0.016 0.011

16 0.034 0.022 0.016
CRAY J90 2 0.039 0.039 0.039

4 0.044 0.044 0.044
8 0.079 0.058 0.058

16 0.098 0.090 0.090

Table 3. Global Communications Rates

and it should be noted that more general reductions allowing for
a sequence of values per PE increase the length of the data
packet hence allowing for better results on the PVP machine. As
evidence, a global vector sum was performed, with each PE
having a sequence of 100000 numbers to add. Note that this is a
standard implementation of a log2 reduction, and not the T3D
shared memory library routine, which is quite faster. Table 4
shows these results.

Finally, as an example of an application porting, the NAS
Parallel multigrid (MG) benchmark was taken and modified for
MPT. On 16 PE’s, this code runs in 13.127 seconds on the
CRAY T3D, while taking 7.611 seconds on the CRAY J90 using
MPT with 16 PE’s.

Summary

The Message Passing Toolkit, released in early 1996, is a tool
which allows nearly transparent porting of parallel applications
to PVP systems. These applications can expect a good level of
performance as long as the advantages of the PVP platform
using MPT are exploited using long data packets, while main-
taining barrier synchronization to a minimum.

Acknowledgments

Recognition and gratitude is extended to Charles Grassl for
supplying barrier and latency tests; to Margaret Cahir for
supplying global communications functions; to Paul Hastings
for his special contributions; and to Heidi Poxon for her insight
on SHMEM MPT libraries.

MPT Performance

PE’s
CRAY T3D

millisecs
CRAY J90
millisecs

2 43.53 17.89
4 87.71 30.67
8 133.30 64.71
16 178.07 181.88

Table 4. Global Vector Sum

