

CUG 1996 Spring

 Proceedings

301

Mesh Generation on a T3D

Joan Carles Mestres, International Center for Numerical Meth-
ods in Engineering, Barcelona, Spain.

ABSTRACT:

 The goal of this paper is to show the performance of a parallel unstructured mesh
generator as well as the improvements in terms of speed-ups in front of the equivalent results
achieved without parallelization. The mesh generator allows the partition of domains in a num-
ber of subdomains corresponding to the number of processors to be used in a parallel computer,
the mesh generation for each subdomain performed by each processor, and lastly, the assembly
of the individual outcomes in different files in order to apply the corresponding finite element
solvers.

Introduction

Nowadays the necessity for fast generation of large unstruc-
tured meshes for finite elements or finite volume computations
is common to many fields in science and engineering and is
showing its importance in structural analysis and computational
fluid mechanics, where this generation has represented many
times a bottleneck for the overall process.

In some applications, the mesh needs to be regenerated either
locally or globally many times, even hundreds of times, like in
the transient simulations with moving bodies [1]. The possi-
bility of carrying out numerical simulations in parallel
computers has helped to significantly reduce the required
computational time in many applications. An important pending
task will be to discretize the problem efficiently to port unstruc-
tured mesh generation to parallel machines. Despite its impor-
tance, very few references of work on this subject have been
reported [2-5].

To be efficient in the fields where the parallelization of the
mesh generation has proved its enhancements, the generation
has to be able to handle complex geometries. It seems advisable,
for this reason, the use of triangular elements when dealing with
2D meshes and tetrahedra for 3D meshes.

To achieve the maximum efficiency of the parallelization,
obtained by avoiding as much as possible the transfer of infor-
mation among processors, thus allowing great savings of CPU
time, the aim of a parallel mesh generation is to work as inde-
pendently as possible in each particular subdomain. In this
work, this has been possible using the advancing front tech-
nique, once a common segment of the initial front for different
processors -the shared part of the common boundaries-, is
defined.

The parallel mesh generation program developed performs
the partition of domains in a number of subdomains corre-

sponding to the number of processors to be used in the subse-
quent analysis computations. The mesh generation for each
subdomain is performed for each of the processors, so the most
CPU time consuming process, with the introduction of all nodes
and elements, what involves a large amount of operations, can
take advantage of the parallelism. Lastly, the program assem-
bles the individual outcomes in different output files, depending
on the finite element solver to be used.

The paper displays the steps that enable the parallelization of
the mesh generation once the problem has been broken up to be
solved into pieces, how to handle each processor a piece of the
problem and how to make it compatible with all the rest.

The outline of this program is showed in the flow chart of
figure 1, pointing out the parts of the program that are executed
by a single processor (sequential execution) and the parts that
are performed by all processors (parallel execution), as well as
the section of the program whose CPU time is measured, which
corresponds to the explicit mesh generation. Finally, when the
generation is over, the numerical aspects that arise from the
parallelization and lead to the overall improvement, represented
in the examples, are analysed.

All the technical concepts involved in the advancing front
technique that are not specific to the parallelization of the
program (generation of a background mesh, construction of the
interior points of the boundaries and the initial advancing front,
creation of the interior elements, introduction of the elongation
to get stretched elements if desired, searching elements algo-
rithms and smoothing operations) can be gotten from the bibli-
ography [7-12]. All numerical values in the program have been
adopted from these criteria [10].

302

CUG 1996 Spring

 Proceedings

UNSTRUCTURED MESH GENERATION
PROGRAM

A background mesh

A background mesh is a mesh that usually covers all the
domain to be meshed. At the nodes of this mesh the user defines
the desired element size, element stretchings, and stretching
directions. The corresponding values for every new created
point are obtained by interpolation of the nodal values of the
background triangle that contains it. With the method developed
by the authors, it is not even necessary that the background mesh
covers all the domain, as the program checks this eventuality,
before delivering the subdomains to be meshed by each
processor, and in case that the domain to be meshed is not
completely covered, one of the processors expands the back-
ground mesh in order to achieve the whole covering.

This fact enforces the program to run the generation of the
background mesh in a sequential way, as the partition in subdo-
mains before defining the corresponding background mesh for
each one does not provide any clear computational advantage,
but oppositely it would represent a greater computational cost, as
well as an unnecessary check of conformity among the corre-
sponding meshes subsequently generated by each individual
processor.

Figure 1: Flow chart. This diagram shows the processes
performed in parallel and in serial execution and the section of the
program whose CPU time is measured.

To achieve this goal in a quick way, with the minimum
transfer of communication among processors, it is imposed that
the nodes that belong to the boundary of a subdomain shared by
another one must be the same also for the latter. To clarify these
ideas and to show the results in a simplified way, henceforth all
the concepts and examples will make reference to the 2D
advancing front technique.

Once the boundaries are defined, the program will split the
domain into the desired number of subdomains. There are
different ways of doing that [13-18]; in order to allow the user to
take control over the domain generation, he himself can define
the boundaries between subdomains.

Generation of the subdomains

The subdomain's boundary will be composed by the combi-
nation of a series of closed curves that will limit the outer space,
as well the inner space in case that there exist holes inside the
domain. Obviously, there will exist interior lines to divide mate-
rials or representing loads, for example. All these curves will be
defined through the interpolation of series of points entered as
data. The order of the introduction of these points will define the
sense of the curves.

The exterior boundaries will be oriented in clockwise sense,
whilst the interior ones -these limiting interior holes- will be
oriented in anti-clockwise sense. For the interior curves sepa-
rating different subdomains, the sense will be defined accord-
ingly to the subdomain to be considered.

Every processor will then generate, independently in every
subdomain, the intermediate points accomplishing the corre-
sponding spacing between two consecutive points, according to
the definitions of the background mesh. Later on, the initial front
created, everyone will make up the interior unstructured meshes,
and once all the individual output files are assembled, the
program will perform the smoothing in a sequential way,
keeping unmoved the boundaries and the explicitly constrained
points.

Results

The examples will consist in the generation of a mesh over a
square domain with a square hole inside, run sequentially and in
parallel with four (figure 2) and sixteen processors (figure 3), for
six different spacings.

The first reference model, called BIG1, has the spacings
shown in figure 4, what will be divided by 2, obtaining the model
called BIG2, and will be divided by 5, obtaining the so-called
BIG5. Successively, dividing by 10, 20 and 50, there will be
obtained the models SMALL1, SMALL2 and SMALL5.

With all the required information, the program creates the
front of the boundaries, equaling the generated points in the
common interior boundaries for the two initial fronts related to
the subdomains that share the curves, although being defined in
inverse sense to allow the mesh generation in the interior areas
of both subdomains. In this way, the corresponding meshes for
the six models to be compared are obtained. The number of
elements and nodes are shown in Tables 1 and 2.

CUG 1996 Spring

 Proceedings

303

In these examples, the time needed for each processor to
generate the corresponding interior mesh has been calculated.
This represents to measure the time spent since the processor
begins to simulate its own boundary by B-splines (initialization
of the advancing front) until it finishes the mesh (empty front).

Two values are considered. The first value -henceforth, called
the CPU time-, expresses the addition of the CPU time spent by
each processor in the respective procedure, it is, the whole
amount of CPU spent.

 The second value -henceforth, called the elapsed time-,
expresses the waiting time since the process has begun until it
finishes; as the different processors run synchronously, it will

Figure 2: Original domain split into four subdomains.

Figure 3: Original domain splitted in sixteen subdomains.

represent for the parallel procedures the time spent by the
processor that takes longer.

 All the examples have been run in a CRAY-T3D, and all
times are expressed in milliseconds.

 The different obtained times are shown in table 3, for models
BIG1, BIG2 and BIG5 and in table 4 for models SMALL1,
SMALL2 and SMALL5.

For a comparison among the different values, let's assume a

relationship of the type y=kx

α

being y the value of the CPU time
and x the number of nodes.

Taking logarithms on both sides, the expression gives

and making , and

the following expression is obtained:

Using the latter, it is therefore possible to represent the sought
relationship in a double logarithmic scale as a straight line.

Using the time measures, it is possible to estimate

α

. Taking
the values obtained in the sequential procedures,

Figure 5 shows that this value is very well represented along
all the curve, as there are not problems of balancing among
processors. For the parallel procedures, the slope of the straight
line becomes well represented for numbers of nodes big enough,
because the influence of linear factors (generation of the points
on the boundaries) is more negligible in front of the rest when

Figure 4: Spacings in Model BIG1.

Log
10

y = Log
10

k + αLog
10

x

y = 10
ψ

k = 10
κ

x = 10
ξ

ψ = Κ + ∝ξ

α =
Log 3530231 − Log 82

Log 51521 − Log 38
= 6 . 5477 − 1. 9138

4 . 712 − 1. 58
= 1. 48

304

CUG 1996 Spring

 Proceedings

the number of interior nodes is bigger in front of the boundary
ones.

With these considerations in mind, the exponent for the
different parallel procedures has been calculated. For the proce-
dure with four processors, an approximate value of 1.426 (calcu-
lating the slope from the model SMALL5 -458764 milliseconds
and 49893 nodes- to the model BIG5 -789 milliseconds and 574
nodes) is obtained and for the procedure with sixteen processors,
the approximate value is 1.326 (calculating the slope from the
model SMALL5 -235843 milliseconds and 53253 nodes- to the
model SMALL1 -3323 milliseconds and 2138 nodes).

When it comes to the elapsed times instead of the total CPU
times, the considerations about the importance of a good balance
becomes decisive to get the smallest possible time.

Taking as reference the same models considered in the esti-
mation of the slope for the CPU times, the slope value for the
four processors procedure is 1.428 -approximately the same as
the obtained for the ensemble of the processors, what coincides
with the appreciation of a good sharing.

The slope for the sixteen processors procedure of 1.361,
(obviously, the value for the sequential procedure will be the
same as the CPU times and elapsed times are the same) that has
a bigger difference respect the slope obtained for the ensemble
of the processors, what could be explained by a greater gap
between the fastest and slowest processors, because of the differ-
ence between the number of elements generated by the two
extremes in both cases.

Figure 8 shows on the Y-axis the logarithm of the elapsed
time spent in milliseconds for the three different procedures:
sequential, with four processors and with sixteen processors,
while on the X-axis shows again the logarithm of the number of
nodes.

Two final tables with their corresponding graphics are
included to present the enhancements of parallelization, as a
synthesis of these results.

Figure 5: Relationship between the logarithm of the CPU time in
milliseconds and the logarithm of the number of nodes
- - for all procedures.ψ = Κ + ∝ξ

Table 5 gives the ratios of the CPU times between the sequen-
tial and a four processors procedure, between the four and a
sixteen processors procedure and between the sequential and a
sixteen processors procedure concerning to all models.

To have a comparative value for the number of elements or
nodes in every model, as these numbers did not coincide exactly,
it has been chosen a common value for each model. Hence, for
model BIG5, the arithmetic mean is 1050.67, obtained from

consequently, the number 1000 is taken as the common number
of nodes for the different procedures.

From this value, all the rest can be calculated easily. When
the spacing in all the nodes increases twice, the number of
elements increases four times (the square of 2). Analogously, a
decrease of 2.5 times the spacing in all the nodes will represent
a decrease of 6.25 times (the square of 2.5).

From this reference, the different number of elements consid-
ered will be: 40, 160, 1000, 4000, 16000 and 100000 for models
BIG1, BIG2, BIG5, SMALL1, SMALL2 and SMALL, respec-
tively.

It is interesting to see the relationship between the obtained
values for the different procedures, as it can be an indicator of
the goodness of the achieved balance among processors.

In fact, for perfectly balanced work-share among processors,
the improvement for four processors in front of the sequential
procedure would be the same as the improvement for sixteen
processors in front of the four processors procedure.

In this case, the time spent by sequential procedure would be

. For the four processors procedure, the time spent

would be

Figure 6: Relationship between the logarithm of the elapsed
time in milliseconds and the logarithm of the number of
nodes - - for all procedures.ψ = Κ + ∝ ξ

1028 + 1036 = 1088

3

y = kx
α

CUG 1996 Spring

 Proceedings

305

For the sixteen processors procedure, the time spent would be

And the ratio between the two first exposed times and

between the two last would be exactly the same: .

In the latter, the ratio goes from 1.616 to 1.945 for the three
SMALL models, and the ratio between the sequential and with
four processors is not too far, as it goes from 6.251 to 7.695,
what seems a rather acceptable balance.

It can be appreciated a regular relationship between the two
parallel procedures. To consider the previously exposed rela-

tionship of , for an average value of 1.376, a ratio of

1.684 would be achieved, what can be a representative value for
the biggest values (the most reliable) of the shown ratios in the
table.

All these values have its graphical representation in figure 7,
that represents the relationship between the CPU times for the
different procedures in all models, while the X-axis indicates the
logarithm of the number that represents the amount of generated
elements.

Most of the previous considerations apply for the elapsed
times. However, it cannot be expected the same degree of
proportionality and, only in case of a perfectly balanced domain
decomposition, the ratio between the obtained times for every
couple of procedures will have the same simple expression.

In fact, in this case, the time spent for the four processors
procedure will be and for the sixteen processors proce-

y = k

i = 1

4

∑ x
i

α
= k

x α

4
α − 1

y = k

i = 1

16

∑ x
i

α
= k

x α

16
α − 1

4
α − 1()

− 1

4
α − 1()

− 1

Figure 7: Relationship between the CPU times.

k xα

4
α

dure will be , with a new common ratio between the

consecutive procedures of .

Again, the elapsed times are also presented. The ratios
between the different procedures are shown in Table 6.

All these values are equally represented in figure 8. The
elapsed time is an important value to be considered. It repre-
sents, definitely, the difference in waiting time between different
procedures, so the effective speed-up that can be achieved. With
the synchronism of the parallel processors, the time needed to
run model SMALL5 sequentially is more than 20 times the time
needed to run it with 4 processors and more than 100 times the
time needed to run it with 16 processors.

These figures can be a proof of the conclusions of this study:
the improvements presented for the different procedures agree
with the goals of parallelization, important speed-ups and mini-
mization of the interprocessor transfers of information.

Numerical example. A real mesh

The mesh generation of a real example is presented. The
example represents the front of an aircraft and it has been taken
from a workshop on hypersonic flows [19].

Two procedures have been run, the sequential case and with
four processors.

In the first case, 315 elements for 183 nodes have been
obtained, whereas with four processors there are 305 elements
for 179 nodes, although two new nodes on the exterior boundary
have been added to better define the subdomains.

Both overall meshes are shown in figures 9 and 10.
Finally, in figure 11, it can be seen the final smoothed mesh,

once all the individual meshes have been joined for the
smoothing.

For the sequential procedure, it takes 1073 milliseconds to
create the mesh, while with four processors, the total CPU time
to create the mesh is 219 milliseconds, and the processor that

k xα

16
α

4
α()

− 1

Figure 8: Relationship between the elapsed times.

306

CUG 1996 Spring

 Proceedings

takes longer spends 99 milliseconds (elapsed time) for 79
elements and 52 nodes.

Figure 9: Sequential procedure (315 elements, 183 nodes).

Figure 10: Four processors procedure (305 elements, 179 nodes).

It is important to point out the great difference in time
observed between both procedures, more than a second versus a
little more than a fifth. This great difference between both proce-
dures, bigger than what should be expected according to the
previous examples, is mainly due to the generation of the
boundary of the aircraft, more complicated than the generation
in the square domain, what penalizes the procedure that lasts
more.

It is important to emphasize this point, the increase of the
penalization that represents not to parallelize the algorithms
when the complexity of the problem is bigger.

Considering, besides, the tendency of the increasing time in
function of the number of elements (what depends on the
number of iterations required as well as the average number of
tries required to find the host element for each point to be inter-
polated [20]) generated by the program, it is clear the enhance-
ment represented by parallelization.

To carry out the efforts to continue creating parallel programs
capable of creating balanced unstructured meshes, estimating
efficiently the errors and quickly readapting the meshes to accu-
rate the results seems to be the challenge for mesh generation.

References

[1] Löhner, R. 1990. Three-Dimensional Fluid-Structure Interaction Using a
Finite Element Solver and Adaptive Remeshing. Computational Systems
Engineering, 1: 257-272.

[2] Carey, G.F. 1989. Parallel Supercomputing Methods, Algorithms and
Applications. Chichester, UK.

Figure 11: Smoothed mesh.

CUG 1996 Spring

 Proceedings

307

[3] Farhat, C. 1993. TOP/DOMDEC: A Software Tool for Mesh Partitioning
and Parallel Processing. Center for Space Structures and Controls,
CU-CSSC-93-11, Boulder, US.

[4] Farhat, C. 1993. Automatic Partitioning of Unstructured Meshes for the
Parallel Solution of Problems in Computational Mechanics. International
Journal for Numerical Methods in Engineering,36: 745-764.

[5] Globish, G. 1995. PARMESH - A Parallel Mesh Generator. Parallel
Computing,21:509-524.

[6] Löhner, R., Camberos, J. and Merriam, M. 1992. Parallel Unstructured
Grid Generation. Computer Methods in Applied Mechanics and Engi-
neering,95:343-357.

[7] Peraire, J. 1986. A Finite Element Method for Convection Dominated
Flows. Ph. D. Thesis, University College of Swansea, UK.

[8] Peraire, J., Morgan, K. and Peiró, J. 1989. Unstructured Finite Element
Mesh Generation and Adaptive Procedures for CFD. AGARD FDP: Spe-
cialists' Meeting, Loen, Norway.

[9] Frykestig, J. 1994. Advancing Front Mesh Generation Techniques with
Application to the Finite Element Method. Department of Structural Me-
chanics, Chalmers University of Technology, Göteborg, Sweden.

[10] Bugeda, G. 1990. Utilización de Técnicas de Estimación de Error y Gen-
eración Automática de Mallas en Procesos de Optimización Estructural.
Ph. D. Thesis, Universitat Politècnica de Catalunya, Barcelona.

[11] Löhner, R. and Parikh, P. 1988. Generation fo Three-Dimensional Un-
structured Grids by the Advancing Front Method.International Journal
for Numerical Methods in Fluids,8:1135-1149.

[12] George, P.L. 1991. Automatic Mesh Generation. Application to the Fi-
nite Element Methods. INRIA, Institut National de Recherche en Infor-
matique et en Automatique, Domaine de Voluceau, France:137-154.

[13] Farhat, C. 1988. A Simple and Efficient Automatic Finite Element Meth-
od Domain Decomposer. Computational Structures, Vol. 28:579-602.

[14] Flower, J., Otto, S. and Salama, M. 1987. Optimal Mapping of Irregular
Finite Element Domains to Parallel Processors. Parallel Computations
and Their Impact on Mechanics, The American Society of Mechanical
Engineers, AMD, Vol. 86:239-252.

[15] Nour-Omid, B., Raefsky, A. and Lyzenga, G. 1987. Solving Finite Ele-
ment Equations on Concurrent Computers. Parallel Computations and
Their Impact on Mechanics, The American Society of Mechanical Engi-
neers, AMD, Vol. 86:209-228.

[16] Vanderstraeten, D., Zone, O., Keunings. R, and Wolsey, L. 1993.
Non-deterministic Heuristics for Automatic Domain Decomposition in
Direct Parallel Finite Element Calculations. Parallel Processing for
Scientific Computing, SIAM:929-932.

[17] Chan, W. and George, A. 1980. A Linear Time Implementation of the
Reverse Cuthill McKee Algorithm. BIT, Vol. 20:8-14.

[18] Farhat, C. and Lesoinne, M. 1993. Automatic Partitioning of Unstruc-
tured Meshes for the Parallel Solution of Problems in Computational Me-
chanics. International Journal for Numerical Methods in Engineering,
Vol. 36, No. 5:745-764.

[19] Flow over a Double Ellipsoid; Workshop on Hypersonic Flows for Re-
entry Problems, Antibes. 1990. INRIA, Institut National de Recherche en
Informatique et en Automatique, Paris, France, Vol. 4:III.

[20] Löhner, R. 1994. Robust, Vectorized Interpolation Algorithms for Un-
structured Grids. GMU/CSI, the George Mason University Publications,
Fairfax, US.

308

CUG 1996 Spring

 Proceedings

Table 1. Number of elements and number of nodes for models BIG1, BIG2 and BIG5.

BIG 1 BIG 2 BIG 3
Elements Nodes Elements Nodes Elements Nodes

Seqtial. 48 38 182 115 1028 570
4 Procs. 67 50 201 126 1036 574
16 Procs. 77 53 222 138 1088 600

Table 2. Number of elements and number of nodes for models SMALL1, SMALL2 and SMALL5.

SMALL1 SMALL2 SMALL5
Elements Nodes Elements Nodes Elements Nodes

Seqtial. 4097 2159 16160 8297 101961 8297
4 Procs. 4026 2124 16099 8268 99657 49893
16 Procs. 4053 2138 15874 8156 102916 53253

Table 3. CPU and elapsed time -msec- for models BIG1, BIG2 and BIG5.

BIG 1 BIG 2 BIG 5
CPU Elapsed CPU Elapsed CPU Elapsed

Seqtial. 82 456 5015
4 Procs. 71 24 133 47 789 293
16 Procs. 81 6 185 17 688 80

Table 4. CPU and elapsed time -msec- for models SMALL1, SMALL2 and SMALL5.

SMALL1 SMALL2 SMALL5
CPU Elapsed CPU Elapsed CPU Elapsed

Seqtial. 33566 236735 3530231
4 Procs. 5370 1865 33399 12946 458764 172490
16 Procs. 3324 440 17346 2448 235843 35026

Table 5. Ratios between the CPU times for the different procedures in all models.

BIG1 BIG2 BIG5 SMALL1 SMALL2 SMALL5
Seqtial./4 Procs. 1.155 3.429 6.356 6.251 7.088 9.132
4 Procs./16 Procs. 0.877 0.719 1.146 1.616 1.925 1.945
Seqtial./16 Procs. 1.012 2.465 7.289 10.101 13.648 17.763

Table 6. Ratios between the CPU times for the different procedures in all models.

BIG1 BIG2 BIG5 SMALL1 SMALL2 SMALL5
Seqtial./4 Procs. 3.417 9.702 17.116 17.898 18.286 20.466
4 Procs./16 Procs. 4. 2.765 3.662 4.238 5.288 4.925
Seqtial./16 Procs. 13.667 26.823 62.725 76.286 96.705 100.789

