

CUG 1996 Spring

 Proceedings

315

Tightening System Security Under UNICOS

Nicholas P. Cardo

, Sterling Software, Inc., Numerical Aerody-
namic Simulation Facility, NASA Ames Research Center, M/S
258-6, Moffett Field, CA 94035-1000 USA

ABSTRACT:

 Protecting a system from threats is an ever increasing and time consuming func-
tion. However, there are several changes that can be made to a system which will improve its
security. This paper discusses two changes that can be made to a system for improving system
security. The first change enhances the password selection criteria. The second change
improves the authentication and audit trail capabilities of the

su

 command. These two improve-
ments, along with their rationale, are discussed.

Security threats can come in many forms and from many
sources. System administrators must take the necessary precau-
tionary steps to protect the system and its users from attacks.

Although evaluating a system’s security and securing it from
all threats is a major undertaking, there are some simple changes
that can be made to improve a system’s security. Two such
changes are improving the password selection criteria and
improving the authentication and audit trail capabilities of the

su

 command.
Using existing security features that are provided with

UNICOS can improve system security. There are also several
easily obtained security tools that can be used to enhance secu-
rity auditing.

1 Improving Password Selection Criteria

The topic of passwords falls under several security concerns
ranging from clear text passwords on the network to no pass-
words on accounts. A comon problem with passwords is that in
many cases, comon dictionary words are used.

The password selection criteria determines the complexity of
the password. The more complex the criteria, the more difficult
it becomes to crack the password. Therefore, increasing the
complexity of password selection criteria, improves the quality
of the password.

For example, suppose the password to be used is the word
“

password

”. Without any rules, this is a simple dictionary
word which can be cracked in very little time. By introducing
some complexity into the criteria, the password becomes
tougher to crack. The following are variations of the word
“

password

” listed in order from easiest, to most difficult to
crack:

password

passw0rd

Passw0rd

Pas$w0rd

By altering a few characters, the ability to crack the password
becomes more difficult. Changing the spelling of words can also
improve the quality of the password. For example, compress
double letters to single letters to get “

Pa$w0rd

”. By
compressing double letters, the word chosen is no longer a
dictionary word with some simple substitutions. Another tech-
nique is to drop vowels from passwords to get a password that
is not a direct match for a dictionary word in the form
“

Pa$wrd

.” The password could be increased to 8 characters to
get “

#Pa$wrd1

.” The end result is a password that is based on
a dictionary word, but is sufficiently altered to make cracking
difficult. By adding the leading

#

 and the trailing

1

, the pass-
word no longer matches a dictionary word.

Small changes to the algorithm can increase the number of

combinations drastically. The number of combinations

1

 of

r

objects selected from a set of

n

 distinct objects is:

Using 26 lowercase letters and requiring only 6-character
passwords would yield:

A password length of 8 characters shows:

This results in an increase of 1,332,045 possible combina-
tions. Increasing the number of possible characters to choose
from by including uppercase letters, numbers, and special char-
acters will also increase the number of possible combinations.

n
r 

  n!
r! n r–()!
----------------------=

26
6 

  26!
6! 26 6–()!
--------------------------- 230230= =

26
8 

  26!
8! 26 8–()!
--------------------------- 1562275= =

316

CUG 1996 Spring

 Proceedings

To get a better understanding of the importance of complex
passwords, a list of commonly used password hacking tech-
niques follows.

• Use dictionary words

• Substitute numbers for letters. Common substitutions are:

0

 for

o
1

 for

i

 or

l
5

 for

s
3

 for

e

• Substitute special characters for letters. Common substitu-
tions are:

$

 for

s
!

 for

i

 or

l

• Use proper names

• Compress double letters to a single letter

The best passwords contain numbers, special characters,
uppercase letters, lowercase letters, and are unintelligible to the
human eye. However, these are difficult to remember and typi-
cally introduce another security problem, writing down pass-
words where they may be viewed by unauthorized personnel. A
solution to this is to base the password on multiple words. An
example of this would be “

3atAtJoe$

”, which is derived from
“

Eat At Joe’s

”.

1.1 Existing Password Criteria

The need for enforceable guidelines for password selection is
extremely important. The

/bin/passwd

 command supplied

with UNICOS contains a few selection rules. These rules

2

 are:

• Each password must have at least six characters. Only the
first eight characters are significant.

• Each password must contain at least two alphabetic charac-
ters and at least one numeric or special character. In this
case, “alphabetic” means mixed-case letters.

• Each password must differ from the user’s login name and
any reverse or circular shift of that login name. For compari-
son purposes, an uppercase letter and its corresponding low-
ercase letter are equivalent.

• The new password must differ from the old by at least three
characters. For comparison purposes, an uppercase letter and
its corresponding lowercase letter are equivalent.

1.2 Modified Password Criteria

The guidelines provided with

/bin/passwd

 are sufficient
for generating good passwords, but could be improved.

Only the first eight characters of a password are used for
authentication. Increasing the minimum length of a password
from six to eight will improve the quality of the password.

Another improvement is to force combinations of uppercase
letters, lowercase letters, numbers and special characters to help
insure that commonly spelled words are not used as passwords.

With these changes, the new password criteria becomes:

• Each password must have at least eight characters. Only the
first eight characters are significant.

• Each password must contain characters from at least three of
the following categories:

• uppercase characters

• lowercase characters

• numbers

• special characters

• Each password must differ from the user’s login name and
any reverse or circular shift of that login name. For compari-
son purposes, an uppercase letter and its corresponding low-
ercase letter are equivalent.

• The new password must differ from the old by at least three
characters. For comparison purposes, an uppercase letter and
its corresponding lowercase letter are equivalent.

The main differences are that the minimum length of a pass-
word is increased to eight and the number of different types of
characters required is increased from two to three.

1.3 Modifying

passwd

Unfortunately, as of UNICOS 9.0, there are no user exits
available in

passwd

. This means the only way to improve the
password selection algorithm is to modify the source code for

passwd

.

1.3.1 Minimum Password Length

Although a password can exceed eight characters in length,
only the first eight characters are used by UNIX systems. While
increasing the minimum length of a password increases the
number of possible combinations, the 8-character limit causes an
upper bound limitation to be enforced. By setting the minimum
length to eight, a password cracking program can be set to try
only 8-character passwords. The password field in the udb,

ue_passwd

, provides space for a 15-character encrypted pass-
word. At current, UNICOS still only utilizes the first eight char-
acters of any password for authentication.

Increasing the minimum length of a password is a very simple
change. The define variable

MINLENGTH

 controls the minimum
length of a password. Simply change

MINLENGTH

from six to
eight in

passwd.c

.

#define MINLENGTH 8

Random passwords are not formed from dictionary words,
making them very difficult to crack. However, to set the
minimum length for a random password, the variable

minpass

in the file

digrams.c

 must be increased from seven to eight .

int minpass = 8;

The command

ranpass

 uses the information in

digrams.c

 for password generation.

CUG 1996 Spring

 Proceedings

317

1.3.2 Required Characters

This change is a little more difficult but the comments within
the source code help identify the section to be updated. Each
criteria is separated and identified within the source code.

Locate the desired section to update, in this case the routine
that enforces two alphabetic characters and one numeric or
special character. Again, each of the criteria is easily identified
by their comments and the source code itself.

The scanning of the characters is replaced with:

if (isupper(c))
flags |= 1;

else if (islower(c))
flags |= 2;

else if (isdigit(c))
flags |= 4;

else
flags |= 8;

This causes uppercase, lowercase, numbers, and special char-
acters to be tracked separately.

The testing of the

flags

 variable needs to be updated to
permit the following values:

These values indicate that the password has matched three out
of the four categories of characters.

To increase the complexity by requiring all four types of
characters, the

flags

 variable must equal 15 for a valid pass-
word.

1.4 Existing Feature

UNICOS supports a password aging feature to assist in pass-
word maintenance. This feature allows the administrator to
define a maximum lifetime for any user’s password. At the end
of the password’s lifetime, the user is required to change their
password.

A second part of this feature sets a minimum lifetime for a
password. This is useful for preventing a user from changing
their password and then immediately changing it back.

2 Becoming Another User

The

su

 command allows a user to become another user,
including root. Authentication is performed on the basis that the
user utilizing the

su

 command is in possession of that user’s
password.

There are two basic shortcomings of the

su

 command. The
first is that there is very little information logged about the

TABLE 1. Valid flags values

Value
Upper

1
Lower

2
Number

3
Special

4

7 1 1 1 0

11 1 1 0 1

13 1 0 1 1

14 0 1 1 1

15 1 1 1 1

activity. An audit trail would have to be performed through the
accounting data, but even then the true identity of who is
becoming root is unknown. The second problem area is that
there is no way to restrict activity for certain accounts to specific
users.

2.1 Privileged Command Processors

One way to keep from distributing privileged passwords is to
use an interface utility which can only execute selected
commands. One such command is

priv

. This utility has a
configuration file which identifies who can execute the
commands identified within the configuration file. Also
contained within the configuration file is the username to
execute the command.

A sample entry in the configuration file for running the
command

kill

 would be:

kill /bin/kill root nick,james,paul

This identifies users

nick

, james , and paul to be autho-
rized to run the command kill as user root . This is useful for
killing runaway processes or killing processes belonging to other
users. An example of the command is:

priv kill -9 12345

In this example, process id 12345 will be sent a signal 9 to
terminate it. The uid of the process for kill will be 0 so that
the kill command is executed as root .

Using the priv command causes all of its activities to be
logged as well as all of the arguments specified.

Jan 15 07:15:01 localhost priv: uid=nick
(1234) cwd=/home/nick cmd=/etc/priv kill
-9 12345

Jan 15 07:15:01 localhost priv: running as
uid=0, execing to binary /bin/kill

These two log entries identify who ran the kill command as
well as what options were specified for the kill command.

It is possible to safely set up a configuration file for priv so
that almost all operation and administrative activities can be
performed without becoming root .

Two other alternatives are sudo and the Operator SHell
(osh).

2.2 LSU
One security philosophy is to use the user’s own password for

authentication for accessing other accounts, including root .
The lsu command is based on the premise that if a user can
authenticate themselves with their password, then they can
become the desired logged in user. Also, lsu includes the func-
tionality of restricting users who can become another user. The
configuration file contains a list of users who are permitted to
become the destination user. There is also some additional audit
trail information provided with the command.

318 CUG 1996 Spring Proceedings

One problem with the lsu command is that it only requires
the user to know their own password. This means that if an
authorized user of lsu who is permitted to become root has
their password cracked, this also gives access to root .

2.3 Improving su
Giving su the capabilities provided with lsu , while still

requiring the destination user’s password, would provide a
significant improvement to the su command. Unfortunately, the
user exit provided in the su command is insufficient for
performing this functionality. Therefore, a source code modifi-
cation is required to build this functionality into su .

2.3.1 Configuration File
The configuration file consists of lines of the following

format:

name:name1,name2,name3,name4

where name is the destination user and name1, name2,
name3, and name4 are users who are permitted to become
name. If the destination username does not exist in the configu-
ration file, then the destination user is not limited to specific
users. The reverse of this is also true, if the destination user
exists in the configuration file but the invoking user is not listed
as an authorized user, then access is denied, even if the destina-
tion password is known.

However, a special case needs to be addressed. Suppose an
authorized user desires to become root from an unauthorized
account. Authentication is performed by prompting the invoking
user for their username and password. So it is now known who
became root, even if not from their own account.

The UNICOS function ia_user(3C) provides a common
interface to be used as part of identification and authentication.
Part of this provides the capability of restricting root to only
console logins. This is enforced provided CONSOLE is defined
for the library function ia_user() which is part of the module
ia.c in the libc/gen source code. Since root logins are only
permitted on the console, which is presumably secured based on
the location of the OWS, root is protected from network attacks.
Therefore, the only way to become root is to use su . An entry in
the configuration file for root with a list of authorized users
protects unauthorized users from attempting to crack the root
password through the su command.

A valid entry in the configuration file for root would look
like:

root:nick,paul,frank

With the exception of logging in directly to root at the
console, the only users permitted to become root are nick ,
paul, and frank .

A safety precaution is built-in to prevent su from no longer
working in the event that the configuration file is missing. Under
this condition, su will function as though the modification has
not been made and allow continued usage. This feature is impor-

tant because in the event that the filesystem becomes corrupt and
the configuration file is lost, administrators will still have the
ability to become root and reconstruct the lost configuration file.

2.3.2 Improving the Audit Trail
One change to su is to improve the audit trail of users

becoming privileged users. The goal of improving the audit trail
capabilities is to be able to always know who became a privi-
leged user, when, and on what terminal.

Some audit trail capabilities with su can be obtained from
/usr/adm/sulog .

SU 01/04 20:04 + ttyp013 nick-root

The problem with this type of message is that the user to
become root may not be in possession of the root password. It
is impossible to identify the real individual who is becoming
root . Since this modification includes a challenge for the users
password to unauthorized users, a new log message is attained.

Jan 5 08:08:24 localhost su: su to root by
nick from james on tty /dev/ttyp088

Here, the identity of the user becoming root is clearly listed.
There are two additional messages to indicate failures. The

first type of message indicates that the authenticating user
entered an invalid password while the second message indicates
successful password entry for an unauthorized authenticating
user.

Jan 16 14:31:00 localhost su: su to root by
nick from james on tty /dev/ttyp001 failed

This message indicates the user james on tty
/dev/ttyp001 attempted to become root by authenticating
with the password for nick . The “failed ” indicates that the
password entered for the account nick was entered incorrectly.

Jan 16 14:32:06 localhost su: su to root by
nick from james on tty /dev/ttyp001 is not
allowed

This message indicates that all passwords were successfully
entered but that user nick is not authorized to become root .

2.3.3 Adding the Functionality
The modification to su to implement this functionality is actu-

ally straightforward and simple. It consists of two components:
reading the configuration file and authenticating the user.

The configuration file is processed with sequential read oper-
ations until either the destination user is found or the end of the
file is reached. Further action is required only if the destination
user is found.

At this point, three crucial pieces of information are known:
the invoking user, the destination user, and the list of users from
the configuration file. Authenticating the invoking user is a
two-step process. The first step is to scan the list of users for the

CUG 1996 Spring Proceedings 319

invoking user’s name. If there is a match, then access is granted
and no further checking is necessary. However, if the user is not
there, then the invoking user is prompted for their real username
and password. If a proper username and password are given,
then the list of authorized users is scanned for this username. If
there is a match, then access is granted, otherwise access is
denied.

Caution should be exercised when processing passwords. The
getpass() function should be utilized for prompting of pass-
words. This function provides a safe way of entering a password
without displaying the characters entered. However, the pass-
word is now stored in a variable in plain text. The password
should be immediately encrypted and then the plain text copy
destroyed. Password encryption is performed with a one-way
encryption algorithm. In order to validate a password, it must be
encrypted and then compared with the encrypted password in the
system udb.

The following code segment shows a safe way of processing
a plain text password:
getsysudb();
ueptr = getudbnam(username);
pw = getpass(“Password: ”);
epw = crypt(pw,ueptr->ue_passwd);
memset(pw,0,strlen(pw));
if(!strcmp(epw,ueptr->ue_passwd))

printf(“Passwords match\n”);
else

printf(“Passwords don’t match\n”);
It is important to note how the plain text password is handled.

The password is obtained with getpass() , immediately

To
User

Match

Y

Y Y

YN

N

N

N

Read Entry

EOF

From
User
OK

Get Real
User

This
User
OK

Granted Denied

Modification Flowchart

encrypted and then the plain text password is destroyed. At this
point comparisons for a correct password can be performed and
appropriate actions taken.

2.3.4 Example of Challenge

The following is an example of an authorized user becoming
root:

% su

Password:

#

For authorized users, there appears no change in the process
of becoming root. This is also true for destination users not listed
in the configuration file as being restricted. However, for unau-
thorized users, there is an additional step:

% su

Password:

Who are you in real life: nick

Password:

#

The invoking user is prompted for authentication. In this case,
both the root password and the password for nick are
required before access is granted.

3 Helpful Utilities

There are many utilities for performing audits and security
checks that administrators can utilize. Some of these are:

bincheck A very sophisticated file scanning and auditing
package which provides intensive reporting on
changes to the file system from one snap-shot to
the next. Also included is a checksum capabil-
ity.

deszip A fast DES encryption package which includes
a password validation program and a replace-
ment for /bin/passwd .

homecheck A sanity checker for user home directories and
environment files.

noshell A replacement shell to track access to disabled
accounts. When an account is disabled, the shell
field is changed to noshell . When someone
accesses a disabled account (either login, rlogin,
telnet, rsh, rcp or ftp), a message will be sent to
a designated account. This message reports on
the remote host from where the attempt was
made, and if available, the remote user.

raudit A .rhost file auditor which reports on illegal
entries, nonoperational entries, and the total
number of .rhost entries for each user.

320 CUG 1996 Spring Proceedings

4 Summary

There are many ways for an administrator to improve the
overall security of the system. There are also many books avail-
able to aid them with the task of setting up security procedures
for a system.

This paper presents two minor modifications that can be
made to additionally improve the security of a system. The first
modification improves the password selection criteria for the
construction of better passwords. This plays an important role in
the protection of a system from external attacks. The second
modification improves the identification and authentication
mechanism of the su command. This modification keeps unau-
thorized users from becoming root and improves the audit trail
of su activity.

Several security tools have also been identified to assist
administrators. In addition, enabling an existing feature, known
as password aging, has been discussed.

Adding security precautions to a system can be accomplished
with little or no noticeable changes in system operation. There is
an old saying, “An ounce of prevention is worth a pound of
cure.” Everyone benefits from stronger security procedures.

United States sites are welcome to visit the Numerical Aero-
dynamic Simulation (NAS) Facility on the World Wide Web at
http://www.nas.nasa.gov . They can retrieve the secu-
rity utilities mentioned in this paper by accessing the software
archive from the NAS home page. The author can be reached at
cardo@nas.nasa.gov for additional information.

5 References

1. Mathematical Statistics, John E. Freund and Ronald E. Walpole, Pren-
tice-Hall, Englewood Cliffs, NJ, 1980.

2. passwd(1) man page, Cray Research Inc.

