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ABSTRACT: 

 

Migration to the new CRAY T90 series with IEEE floating-point arith-
metic presents a new challenge to applications programmers. More precision in the
mantissa and less range in the exponent will likely raise some numerical differences
issues. A step-by-step process will be presented to show how to isolate these numerical
differences.

 

Data files will need to be transferred and converted from a Cray format PVP system to and
from a CRAY T90 series system with IEEE. New options to the 

 

assign

 

 command allow for
transparent reading and writing of files from the other types of system.

 

Introduction

 

This paper is intended for the user services personnel and
help desk staff who will be asked questions by programmers and
users who will be moving code to the CRAY T90 series IEEE
from another Cray PVP architecture. The issues and solutions
presented here are intended to be a guide to the most frequent
problems that programmers may encounter.

 

What is the numerical model?

 

New CRAY T90 series IEEE programmers might notice
different answers when running on the IEEE machine than on a
system with traditional Cray format floating-point arithmetic.
The IEEE format has the following characteristics:

• Fewer bits of exponent

 

• More bits of mantissa

 

What are the benefits of 

 

IEEE

 

 floating-point rep-
resentation?

 

The IEEE standard floating-point number representation is being
adopted to ease the movement of data between CRAY T90 series main-
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Figure 1:  Cray Research single-precision IEEE format

 

frames and other computational entities such as workstations and
graphic displays. Other benefits are as follows:

• Greater precision. An IEEE floating-point number provides
approximately 16 decimal digits of precision; this is about one and a
half digits more precise than Cray format numbers.

• Specific representations for infinity (

 

±

 

∞

 

) and nonnumeric
results (such as an attempt to divide by 0) so that a user can
be more confident of results (or know that there is a numeric
problem), even if exception interrupts are turned off.

• Control of rounding modes. Some specific operations (for
example, calculating floor and ceiling functions) benefit
from control of rounding mode. Running a job with a differ-
ent rounding mode can sometimes provide an easy check of
numeric stability.

Exponent sign

Mantissa sign
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Figure 3. Extended double format on CRAY T90 series
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• Consistency in handling end-cases.

• Expanded exceptions. For this implementation, the float-
ing-point functional units generate six kinds of exceptions,
which helps users handle numeric problems more easily. The
IEEE floating-point standard requires five of these six exceptions.

A reduced exponent range is one disadvantage to IEEE stan-
dard floating-point numbers with respect to Cray format numbers. In
almost all cases, however, the reduced range will not be noticed.

 

Conformance with 

 

IEEE

 

 standard

 

Table 1 shows features that are required by the standard.

†

 

Cray Research provides conversion routines that let you read in and 
write out 32-bit data.

 

Nonconformance with 

 

IEEE

 

 standard

 

For reasons of overall system performance, CRAY T90 series
systems do not conform with the following requirements of the standard:

• Single (32-bit) format will be supported only through con-
version. When the 32-bit conversion capability is delivered,
you will be able to convert from single binary format to dou-
ble binary format on input (compile time or run time) and
from double binary format back to single binary format on
output. All operations during program execution are per-

Table 1. Required by the standard

Feature CRAY T90 IEEE

Single format (32 bits) No†

Double format (64 bits) (not 
obligatory)

Yes

Three additional, user-
selectable, rounding modes

Yes

NaN (Not a Number value) 
compares unordered (neither 
greater than, less than, nor equal)

Yes

Positive and negative infinity 
operands and result

Yes

Signaling NaN operands (such as 
for uninitialized variables) 
supported

Yes

Quiet NaN (containing diagnostic 
information) preserved in operands 
and results

Yes

Exceptions Yes

Signal five types of floating-point 
exceptions (inexact rounding, 
underflow, overflow, divide-by-zero, 
and invalid operation)

Yes

Round to nearest as default Yes

formed with double binary format or extended double binary
format. The Fortran 90 

 

REAL

 

 type and the C and C++ 

 

float

 

and 

 

double

 

 types are implemented in the double binary format (64
bit). The Fortran 90 

 

DOUBLE

 

 

 

PRECISION

 

 type and the C and C++

 

long

 

 

 

double

 

 type are implemented in the double extended
binary format (128 bit).

• Denormalized numbers as operands to floating-point opera-
tions are treated as zeros. A denormalized number that
results from a floating-point operation is forced to zero, and
the underflow exception is raised.

The following areas of nonconformance are for reasons other
than performance:

• Among the recommended features, Cray Research did not
implement precise traps.

• When an overflow occurs, Cray Research does not always
follow the IEEE standard completely.

• Cray Research recommends that the standard adopt an
extended double format (128 bits), a format that Cray
already has implemented.

 

NaN - Not a Number

 

In the Cray format floating point, there is a concept of an
positive or negative indefinite number. With IEEE, there is a
different concept of “Not-a-Number” or NaN. The standard calls
for two formats of NaN: quiet and signaling.

Table 2 shows some floating-point number examples.

* Greatest representable number, approximately 1.8E308.
† Lease/smallest representable number, approximately 2.2E-308
‡ Quiet NaN, signaling Not-a-Number. At least 1 bit of the fraction 

must be a 1.

Table 2. IEEE floating-point number examples

Value Sign

Biased 
Exponent 

(octal) Fraction (octal)

+0 0 0000 000000000000000000

-0 1 0000 000000000000000000

+1 0 1777 000000000000000000

+1.75 0 1777 140000000000000000

-3.14 1 2000 110753412172702437

+GRN* 0 3776 177777777777777777

+LRN† 0 0001 000000000000000000

+∞ 0 3777 000000000000000000

qNaN‡ 0 3777 1xxxxxxxxxxxxxxxxx

sNaN‡ 0 3777 0xxxxxxxxxxxxxxxxx
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Exceptions

 

A floating-point operation can generate several possible
exceptions. Exception status is always available in a status
register 

 

SR0

 

. These exceptions are sticky, meaning that once a status bit
is set in 

 

SR0

 

, it stays set until an operation explicitly clears it. Users can
read and write status register bits as required. Reading status from 

 

SR0

 

clears all status register bits to zero.

An interrupt is associated with each exception status bit.
Users can enable and disable the interrupts individually, or they
can write all the control/mode bits simultaneously. If a particular
interrupt is enabled when the corresponding status bit is already
set, an interrupt is not generated. Previous Cray PVP systems
generated an interrupt immediately in that case. An interrupt is generated
only if an interrupt enable is set and there is an attempt to set the associ-
ated status register bit, whether or not the status bit was set previously.
For instructions that can change the interrupt mode bits, issue is halted
until all floating-point functional units are quiet. The following are
possible exceptions:

•

 

Invalid

 

. An attempt was made to generate a result that cannot be
represented by a single, numeric (real) number. Invalid is signaled
for the following operations: A signaling NaN received as an input
for any floating-point function. Addition or subtraction of infinities
such as (+

 

∞

 

) + (-

 

∞

 

). Multiplication of 0 by 

 

∞

 

. Division of 0 by 0 or

 

∞ 

 

by 

 

∞

 

. Square root of any number less than 0. Signed compare (a
greater-than test, for example) with either or both inputs of NaN.

•

 

Divide-by-zero

 

. The denominator of a division was zero
with a finite, normal numerator. A divide-by-zero exception
is not generated if the numerator is 

 

∞

 

 or NaN. A result of 

 

∞

 

is returned except for invalid inputs (0/0 or NaN/0).

•

 

Overflow

 

. A result larger than the greatest representable
number was generated. Generally, 

 

∞

 

 is returned; however,
this depends on the current rounding mode.

•

 

Underflow

 

. A result smaller than the least representable
number was generated. Zero, with the appropriate sign, is
returned.

•

 

Inexact

 

. A result was returned that is different than what
would have been delivered if all possible significant bits
were returned. Thus, 1 divided by 3 returns 0.3333 and sig-
nals inexact, and 0.5 divided by 2 returns 0.25 and does not
signal inexact because all significant bits of the operation
were returned. Inexact is signaled on either overflow or
underflow results, but not if the returned result is exactly 0.
The interrupt associated with this exception is often turned
off.

•

 

Exceptional input

 

. A floating-point functional unit received
an operand of 

 

∞

 

 or NaN. The returned result is controlled by
the kind of input operand and the function being performed.
This exception is used for cases where other exceptions
could be generated in normal operations so that the corre-
sponding invalid and overflow interrupts are turned off, but
the user does not expect to receive any nonfinite inputs.

 

Rounding

 

Floating-point computation is done as if an infinitely precise
result will be calculated, but only the most significant bits of that
computation are returned as the result. Generally, this means that
one of two results can be returned, one result that is slightly
greater than the infinitely precise result and one slightly less.
The bits of the computation that will not be returned and the
rounding mode are used to choose which result to return.

If determined to be required by the rounding mode and by any
bits of less significance than that of the least-significant bit,
rounding is done by adding 1 to the last place, least-significant
bit of the delivered result. In rounding, the first bit below the
least-significant bit of the delivered result is known as the guard
bit. All bits below the guard bit are ORed together into a sticky
bit. If both the round and sticky bits are 0, the result is exact and
is returned without modification. If either bit is a 1, inexact is
signaled, and 1 is added to the least-significant bit, depending on
the rounding mode.

There are four rounding modes that apply to floating-point
computation. All floating-point results are delivered with the
rounding mode in effect at the time the floating-point instruction
is issued. The four rounding modes are as follows:

•

 

Round to nearest

 

. The result closest to the infinitely precise
result is returned. If the undelivered bits below the least-sig-
nificant bit have a significance of more than half the
least-significant bit, 1 is added to the least significant bit. If
the result is exactly half, 1 is added if the least-significant bit
is 1. (That is, the round is to even.)

•

 

Round up

 

. The more positive result closest to the infinitely
precise result is returned. If the result is positive and either
the guard or the sticky bit is 1, the result is rounded. If the
result is negative, the result is not rounded because the
unrounded result is the most positive result that is closest to
the infinitely precise result.

•

 

Round to zero

 

. The result closest to zero is returned. Noth-
ing is added to the least-significant bit. This is equivalent to
truncation.

•

 

Round down

 

. The more negative result is returned. If the
result is negative and either the guard or the sticky bit is 1, 1
is added to the least-significant bit. If the result is positive,
nothing is added to the least-significant bit.

 

CF90

 

 Status and Control Functions

 

The IEEE standard also includes a number of functions to control the
behavior of the floating-point arithmetic, such as rounding, and to
inquire about the status of individual numeric values. The CF90
compiler implements intrinsic procedures to obtain, alter, and restore a
single word that contains the entire floating-point status. The flags are 6
sticky exception bits, 6 interrupt enable bits, and a rounding mode flag.
Several procedures described here use named constants provided in
module 

 

CRI_IEEE_DEFINITIONS

 

. 



 

348

 

CUG 1996 Spring 

 

 Proceedings

 

GET_IEEE_STATUS(STATUS)
SET_IEEE_STATUS(STATUS)
GET_IEEE_EXCEPTIONS(STATUS)
SET_IEEE_EXCEPTIONS(STATUS)
TEST_IEEE_EXCEPTION(EXCEPTION)
CLEAR_IEEE_EXCEPTION(EXCEPTION)
SET_IEEE_EXCEPTION(EXCEPTION)

 

The possible values for 

 

EXCEPTION

 

 are the following named
constants:

 

IEEE_XPTN_CRI_INVALID_OPND
IEEE_XPTN_INEXACT_RESULT
IEEE_XPTN_UNDERFLOW
IEEE_XPTN_OVERFLOW
IEEE_XPTN_DIV_BY_ZERO
IEEE_XPTN_INVALID_OPR
IEEE_XPTN_ALL

 

The purpose of the floating-point interrupt enable and disable
bits, and the intrinsic procedures that manipulate them, is to let
users control whether interrupts occur when IEEE exceptions are
encountered during program execution.

 

GET_IEEE_INTERRUPTS(STATUS)
SET_IEEE_INTERRUPTS(STATUS)
TEST_IEEE_INTERRUPT(INTERRUPT)
ENABLE_IEEE_INTERRUPT(INTERRUPT)
DISABLE_IEEE_INTERRUPT(INTERRUPT)

 

The constants passed by the floating-point interrupt routines
are as follows:

 

IEEE_NTPT_CRI_INVALID_OPND 

 

(CRI only)

 

IEEE_NTPT_INEXACT_RESULT
IEEE_NTPT_UNDERFLOW
IEEE_NTPT_OVERFLOW
IEEE_NTPT_DIV_BY_ZERO
IEEE_NTPT_INVALID_OPR
IEEE_NTPT_ALL

 

The intrinsics described below let users control the direction
of floating-point rounding. All four IEEE rounding modes are
supported. The rounding mode stays in effect until reset or until program
completion. The CF90 compiler implements the IEEE standard require-
ment that a program begin in round-to-nearest mode.

 

GET_IEEE_ROUNDING_MODE(ROUNDING_MODE)
SET_IEEE_ROUNDING_MODE(ROUNDING_MODE)

 

The choices for 

 

STATUS

 

 when calling the preceding routines are
the following constants:

 

IEEE_RM_NEAREST
IEEE_RM_POS_INFINITY
IEEE_RM_ZERO
IEEE_RM_NEG_INFINITY

 

Other Supported Functions 

 

IEEE_COPY_SIGN(x, y)
IEEE_BINARY_SCALE(x, 2)
IEEE_EXPONENT(x)
IEEE_NEXT_AFTER(x, 1.0)

IEEE_FINITE(x)
IEEE_IS_NAN(x)
IEEE_CLASS(x)
IEEE_REMAINDER(x, y)
IEEE_INT(x, 1)
IEEE_REAL (X)
INT_MULT_UPPER(ii, jj) 

 

(CRI only)

 

Numerical Differences

 

It is well-known that the imprecise numerical representation
of floating-point numbers used by different kinds of computers
may introduce numerical differences due to rounding and trun-
cation. A favorite example of this is by the results of summing
the numbers

 

: 1 + 1/2 + 1/3 + 1/4 + ...+ 1/n - 1 -
1/2 - 1/3 - 1/4 - ... - 1/n

 

. The algebraic sum is zero, but
different answers are obtained, depending on the order of operations and
the internal representation of the numbers.
On CRAY T90 series systems with Cray floating-point format: (n=500)

 

scalar frwd. -5.131325919727203E-12
scalar back. -5.130118552187923E-12
vector frwd. -4.272970866026071E-14
vector back. -3.286260152890463E-14

 

On a CRAY T90 series system with IEEE and the default rounding
mode of 

 

IEEE_RM_NEAREST

 

:

 

scalar frwd -3.57136195616725161E-15
scalar back -3.77475828372553224E-15
vector frwd -8.50014503228635476E-17
vector back -8.67361737988403547E-18

With rounding mode: IEEE_RM_POS_INFINITY

scalar frwd 2.73850820492471669E-13
scalar back 2.74447131687338697E-13
vector frwd 1.90993054705046461E-15
vector back 2.18922102668273055E-15

With rounding mode: IEEE_RM_ZERO

scalar frwd -2.24533499432189032E-13
scalar back  2.74447131687338697E-13
vector frwd -1.15359111152457672E-15
vector back  2.18922102668273055E-15

With rounding mode: IEEE_RM_NEG_INFINITY

scalar frwd -2.24533499432189032E-13
scalar back -2.24487095579206652E-13
vector frwd -1.15359111152457672E-15
vector back -1.60982338570647698E-15

While all of these numbers are close to zero, none of them is
exactly zero, and more importantly for this paper, different
values are calculated on the different machines. These numerical
differences may be observed in real production codes, while
porting a program from one machine to another. A programmer
must determine if these differences a truly significant, and the
result of a numerically unstable algorithm, or the insignificant
result of different numerical format or different order of opera-
tions.
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Numerical Differences - Order of Operations

One of the most common causes of numerical differences, is
the compiler created order of operations for non-parenthesized
arithmetic. For example:

C = 1.0 + A + C
if  A = -1.0 and  B = 1.0E-20
then, depending on the order chosen by the compiler:
C = (1.0 + A) + C
C = (1.0-1.0) + 1.0E-20 
C = 0.0 + 1.0E-20
C = 1.0E-20
or
C = 1.0 + (A + C)
C = 1.0 + (-1.0 + 1.0E-20)
C = 1.0 - 1.0
C = 0.0

The next step in your algorithm that uses “C” could do some-
thing different depending on its value, this is especially noticeable if it is
used as a divisor.

Isolation of Differences - Step-by-step

There are two major steps in converting to the CRAY T90
computer with IEEE:

1. Convert from CF77 to CF90

2. Convert to the IEEE arithmetic

These two steps should be done independently. The compiler
change can bring out many unsuspected numerical differences,
and isolating and fixing these first will help immensely toward
the second conversion to the IEEE hardware.

Isolation of Differences - CF77 to CF90

On the Cray format system, the CF90 compiler has a “-t n”
switch, this switch is used to truncate the last n bits of precision after all
floating-point calculations. For example: f90 -t4 file.f compiles trun-
cating the last 4 bits of all calculations. If you run this version of the
program and get significantly different answers, you have a numerical
differences problem to isolate.

One technique to narrow down where these differences occur,
is to step through the two programs side-by-side with two Total-
View windows, looking for differences. These differences could
be either the values of key variables, or checksums of important
arrays.

If you are really desperate, you could use atchop  comparing
a normal compile, to a compile with “-t5”,to help narrow down which
subroutine is causing the numerical differences.

File and Data Conversion

Automatic data conversion is available for files which need to
be transported to and from IEEE from other Cray PVP systems.

When your program is being run on a non-IEEE Cray PVP platform,
and you wish to read or write a file compatible with the CRAY T90
series system with IEEE, use an assign  statement like:

assign -N ieee_64 u: u

When your program is being run on CRAY T90 series system
with IEEE, and you want to read or write a file compatible with a tradi-
tional non-IEEE Cray PVP system, use an assign statement like:

assign -N cray u: u

Also explicit conversions are done using library functions to
convert data internally, use library subroutines cry2cri and
cri2cry  for 64-bit data; and ieg2cri and cri2ieg for 32-bit
data.

What does not work with the assign implicit data 
conversion

Implicit data conversion works on the principal that the type
of the data being read or written is determined by the type of the
data on the READ or WRITE statement. If a program is using EQUIV-
ALENCE or has created a “container” array that holds more that one data
type, the implicit data conversion will not work correctly.

Type LOGICAL

The internal format for LOGICAL operands also is changing in
the CRAY T90 series systems with IEEE:

CRI FP .TRUE.  : negative     (-1)

CRI FP .FALSE. : non-negative (0)

IEEE   .TRUE.  : non-zero     (1)

IEEE   .FALSE. : zero         (0)

Reference

For more information, see Migrating to the CRAY T90 Series
IEEE Floating Point, publication SN-2194.

Autotasking, CF77, CRAY, CRAY-1, Cray Ada, CraySoft, CRAY Y-MP, 
CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice, SSD, 
SUPERCLUSTER, SUPERSERVER, UniChem, UNICOS, and X-MP EA are 
federally registered trademarks and Because no workstation is an island, CCI, 
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, 
CRAY-2, Cray Animation Theater, CRAY APP, CRAY C90, CRAY C90D, 
Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, Cray NQS, 
Cray/REELlibrarian, CRAY S-MP, CRAY SUPERSERVER 6400, CRAY T3D, 
CRAY T3E, CRAY T90, CrayTutor, CRAY X-MP, CRAY XMS, CS6400, 
CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, 
HEXAR, IOS, ND Series Network Disk Array, Network Queuing Environment, 
Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE, SUPERLINK, 
System Maintenance and Remote Testing Environment, Trusted UNICOS, 
UNICOS MAX, and UNICOS/mk are trademarks of Cray Research, Inc.


