
Supporting Multiple Workloads, Batch Systems, and Computing Environments on a
Single Linux Cluster

Larry Pezzaglia
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, CA USA

lmpezzaglia@lbl.gov

Abstract—A new Intel-based, InfiniBand attached computing
system from Cray Cluster Solutions (formerly Appro), at
NERSC, provides computational resources to transparently
expand several existing NERSC production systems serving
three different constituencies: a mixed serial/parallel mid-range
workload, a serial, high-throughput, High-Energy Physics/Nu-
clear Physics workload and a mixed serial/parallel Genomics
workload. This is accomplished by leveraging a disciplined
image building system and CHOS, a software package written
at NERSC, comprised of a Linux kernel module, a PAM
module, and batch system integration, to concurrently support
multiple Linux compute environments on a single Linux system.
Using CHOS, this new computing system can run workloads
built for the hosted clusters, while simultaneously maintaining
a single consistent, lean, and maintainable base OS across the
entire platform.

The origins, design, and implementation of the CHOS utility,
and how NERSC’s use of this utility in production has resulted
in a substantial elimination of system management overhead
and user impact, will be discussed in detail.

Keywords-image management, provisioning, cluster manage-
ment

I. INTRODUCTION

The National Energy Research Scientific Computing Cen-
ter (NERSC), located at Lawrence Berkeley National Lab-
oratory (LBNL), is the production scientific computing fa-
cility for the US Department of Energy (DOE) Office of
Science. NERSC provides computational resources to sup-
port the scientific activities of over 5000 users. In addition
to Hopper, a Cray XE6, and Edison, a Cray XC30, NERSC
also supports three x86 64-based mid-range computational
systems1:
• Carver: An IBM iDataPlex cluster of over 1000

nodes running Scientific Linux (SL) 5.5, intercon-
nected with QDR IB, and supporting a general-purpose
serial and parallel workload. The batch system is
TORQUE+Moab, and the nodes are managed with
xCAT.

• Genepool: A commodity Linux cluster of over 400
nodes running Debian 6, interconnected with 1GbE

1A complete list of computational systems at NERSC is available on the
NERSC Web site at http://www.nersc.gov/computational-systems.

and 10GbE, supporting serial and parallel workloads
from the DOE Joint Genome Institute (JGI). The batch
system is Univa Grid Engine (UGE), and the nodes are
managed with Perceus.

• PDSF: PDSF (Parallel Distributed Systems Facility) is
a commodity Linux cluster, with over 200 compute
nodes as well as over 1 PB of internal storage. PDSF
is interconnected with 1GbE and 10GbE and provides
SL 5.3 and SL 6.2 computational environments to sup-
port exclusively serial, high-throughput workloads from
High Energy Physics and Nuclear Physics experiments.
The batch system is UGE, and nodes are managed with
xCAT. PDSF has been in continuous operation since
1996.

Each of the aforementioned midrange systems was de-
signed and deployed to support the needs of a distinct
NERSC user constituency. To accommodate demand for
increased computational capacity by all three constituencies,
NERSC elected to deploy a single new hardware platform,
known internally as Mendel. Mendel would need to be flexi-
ble enough to meet the needs of all three user constituencies,
and expandable enough to meet future needs. Additionally,
a unified configuration and platform management software
environment across the entirety of the new system was
strongly desired to improve consistency and maintainability.

Mendel expands these three “parent systems” in a fashion
nearly transparent to the users of those systems. This is
accomplished by assigning groups of Mendel nodes to
each parent system, and then modifying the software and
firmware configuration on these nodes to match parent
system requirements.

In addition to the aforementioned computational systems,
NERSC provides a number of support services, including
NX2 and MongoDB servers. The Mendel platform provides
housing for these services as well.

II. REQUIREMENTS

Ensuring a seamless expansion of the parent systems
imposes several requirements on the Mendel platform:

2NX is a software package to optimize performance of the X Window
System over low-bandwidth and high-latency network links.

• All source code that compiles on the parent system
must also compile on the expansion system.

• Executable code compiled on the parent system should
function on the expansion system. Users should not be
burdened with a recompilation requirement. However,
recompilation could be recommended to take advantage
of new hardware features of the Mendel platform. For
example, OpenMPI applications from the Genepool
system built to use the OpenMPI TCP transport should
continue to function using the IPoIB interfaces on
Mendel nodes, but a recommendation could be made to
rebuild the application against an OpenMPI supporting
the IB transport.

• All job submission scripts used on the parent system
must also work on the expansion system.

• Users should not be required to modify their workflows,
unless they desire to do so to take advantage of new
features of the new hardware.

III. APPROACH

One approach to the challenge of expanding these parent
systems onto the Mendel platform is to boot each subset
of Mendel nodes into OS images that mimic the parent
system. This requires duplicating the boot images from
each parent system and adding support for the Mendel
hardware, platform management tools, and configuration
management schemes. Each image would be maintained
separately over the lifetime of the parent system. Advantages
of this approach include a simple node boot process and
maximum similarity in software configuration between the
Mendel expansion and the owning parent system. However,
this approach introduces problematic maintainability issues:

• Deploying a software change to the entire Mendel
platform would require individual changes to each boot
image. System administrators would need to analyze
the impact of every change on every base OS configu-
ration, multiplying the maintenance burden.

• Versions of core system software, such as the Linux
kernel, Mellanox OFED, and GPFS, must be kept syn-
chronized across the entirety of the Mendel platform.
To avoid version desynchronization, system administra-
tors would be required to update every image whenever
an upgrade of these components was merited, further
increasing the maintenance burden.

• As parent systems run different Linux distributions,
the subsets of Mendel would be substantially dissim-
ilar. Each subset could encounter issues unique to
its OS configuration. Furthermore, each distribution
has unique configuration file layouts, administrative
recommendations, and upgrade guidelines. Support for
each distinct base OS configuration would need to
be implemented in all system administration scripts,
practices, and operational procedures.

Exacerbating these issues is the need for more than three
images to to support the three parent systems. Distinct
node roles in parent systems, such as compute node and
login node roles, can require different images. Additionally,
NX, MongoDB, and support nodes each present distinct
software needs and would require separate images. All
images would need to be manually kept compliant with site
and system policies. As the number of images increases, the
maintenance burden grows dramatically. Consequently, this
approach scales poorly as the number of distinct node con-
figurations increases, and it was judged to be a suboptimal
management method for the Mendel platform.

Instead, NERSC architected a layered model providing
a framework for accommodating all the computational and
support service workloads on top of a unified hardware
and software platform. NERSC developed a single base
OS image to run on every Mendel node, and designed
a structured “node differentiation” process to dynamically
align nodes to parent system configuration needs at boot
time. Differentiated nodes belonging to compute systems
run batch execution daemons which accept jobs scheduled
by the batch system software located on the parent system.
The workload environments are then provided on top of the
differentiated node environment.

Figure 1 shows the layered Mendel combined cluster
model. The Base OS layer is responsible for core system
software, such as GPFS, Mellanox OFED, and SSH. The
Boot-time Node Differentiation layer holds responsibility
for keeping each node’s system configuration, such as au-
thentication and authorization configuration and mounts of
appropriate shared filesystems, compliant with parent system
requirements. Specialized environments for user applications
are presented at the CHOS layer.

This approach provides separation between the base OS
and the user-visible job environment. Consequently, the
construction of the base OS can be optimized for size,
maintainability, and system administrator convenience, while
the design of the computational environments can focus
exclusively on the desires of the users.

The layered approach also increases system complexity.
A thorough understanding of the Mendel boot-time node
differentiation process, the distinction between the base OS
environments and the user computational environments, and
operational knowledge of all software tools involved are all
essential knowledge for system maintenance. Consequently,
the site-specific knowledge requirements for administrators
and user support staff are increased. While this imposes
some additional burden on site staff, the advantages of this
approach were found to significantly outweigh the costs.

IV. IMPLEMENTATION

A. Hardware

The Mendel hardware and networking platform serves as
the lowest layer of the layered Mendel combined cluster

model. The hardware platform is provided by Cray Cluster
Solutions and designed using a “Scalable Unit” (SU) model,
which provides a framework and concrete architectural de-
tails for disciplined expansion over time. Further expansion
can be accomplished by purchasing and integrating addi-
tional SUs. As of April 2013, the Mendel system contains
over 400 compute nodes.

The production network interconnect is FDR InfiniBand,
provided by Mellanox SX6518 and SX6036 switches. Each
production node has a 4X FDR link to the IB fabric.
Additionally, a set of 1GbE Ethernet switches provides a
separate network for node booting and management.

The compute nodes used on the Mendel platform are
half-width Intel servers based on the Intel Jefferson Pass
and Washington Pass platforms3. These half-width nodes
are mounted in a set of H2000JF 2U chassis, each of
which houses four compute nodes, two redundant 1600W
power supplies, and three 3.5” SAS hard disk bays for each
node. Each compute node has two 8-core Intel Xeon E5-
2670 processors mounted on an Intel S2600JF or S2600WP
system board, which includes on-board FDR IB.

Management, login, and service nodes are provided by 2U
Intel servers with two 8-core Intel Xeon E5-2670 processors
mounted on S2600GZ system boards. Large memory com-
pute nodes with 512GB or 1024GB of RAM are provided
with servers based on the Intel S4600LH2 platform with
four 8-core Xeon E5-4650L processors. The management,
login, service, and large memory nodes all include Mellanox
ConnectX-3 VPI IB HCAs.

B. Software

A number of software tools were selected, created, or
enhanced to implement this layered model. Some of these
utilities had been developed by NERSC staff to fulfill
previous needs.
• CHOS4 (“CHroot OS”): A utility developed at NERSC

to concurrently support multiple Linux environments
on a single Linux system. CHOS is distributed under a
modified BSD license.

• xCAT5 (eXtreme Cloud Administration Toolkit): A
widely used platform management tool capable of
managing large numbers of servers, available under
the EPL (Eclipse Public License), and used for node
provisioning and management on the PDSF and Carver
systems.

• Cfengine36: A popular configuration management soft-
ware package, licensed under the GPLv3. Cfengine3
and its predecessor, Cfengine2, are heavily used by
NERSC.

3http://ark.intel.com/products/codename/48991/Jefferson-Pass and http://
ark.intel.com/products/codename/48990/Washington-Pass

4http://github.com/scanon/chos
5http://xcat.sf.net
6http://cfengine.com

Unified Mendel Hardware Platform

Unified Mendel Base OS

Add-ons

PDSF
Add-ons

PDSF
xCAT Policy

PDSF
Cfengine Policy

PDSF
UGE

PDSF
sl62

CHOS

PDSF
sl53

CHOS

PDSF
SL 6.2
Apps

PDSF
SL 5.3
Apps

Genepool
Add-ons

Genepool
xCAT Policy

Genepool
Cfengine Policy

Genepool
UGE

Genepool
Compute
CHOS

Genepool
Login
CHOS

Genepool
Debian 6

Apps

Genepool
Debian 6
Logins

Carver
Add-ons

Carver
xCAT Policy

Carver
Cfengine Policy

Carver
TORQUE

Carver
Compute
CHOS

Carver
SL 5.5
Apps

Hardware/
Network

Base
OS

Boot-time
Differentiation

CHOS

User
Applications

Figure 1. A visual representation of the layered model used on Mendel
to accommodate multiple workloads on a unified platform.

• image_mgr : An internal NERSC tool created to
facilitate disciplined management of netboot images.
image_mgr was created to manage base OS images
on the PDSF system, and image_mgr leverages mul-
tiple existing, powerful tools:

– FSVS7, a GPLv3 versioning tool designed to han-
dle the contents of an entire Linux root filesystem
using a Subversion repository for backend storage.
FSVS is fast enough to handle thousands of small
files, including symbolic links, device nodes, and
other special files.

– The xCAT genimage and packimage utilities
The Mendel system uses a single xCAT netboot image,

constructed with image_mgr, as the base OS on all com-
pute, service, and login nodes. The default configuration of
the base OS image consists of secure and sensible default
settings that are not tuned for any particular parent system.
Once each node is booted via PXE into the base OS image,
node differentiation is accomplished using a set of xCAT
postscripts and Cfengine rules. This process brings the node
into compliance with the configuration requirements specific
to its assigned parent system and role. Users interact with
the node exclusively through one or more customized CHOS
environments that match the environments of the assigned
parent system.

V. BASE OS LAYER

The Base OS layer provides a familiar, flexible, and
minimal software layer on the Mendel hardware platform.

7http://fsvs.tigris.org

The responsibilities of the base OS layer include providing a
consistent and well-performing set of core system software,
handling the IP configuration of the management Ethernet
network interface, and providing a set of reasonable and
secure default settings for essential network services, such
as SSH, GPFS, the portmapper, and the NFS client.

A. Design Considerations

Design decisions for the base OS were determined by
several major requirements:
• The base OS had to support the CHOS utility and all the

CHOS user environments. This necessitated the choice
of Linux as the operating system.

• The base OS should differ as little as possible from
a well-tested, commonly used platform familiar to
software and hardware vendors, in order to provide a
supportable configuration for IBM GPFS and Mellanox
OFED. This necessitated the use of a glibc-based user-
land8, and also motivated the use of a nearly unmodified
set of Scientific Linux RPMs.

• The base OS had to provide an environment familiar to
NERSC systems analysts, and provide general-purpose
troubleshooting tools such as strace and tcpdump,
which also motivated the choice of Scientific Linux.

• The Mellanox OFED stack should either be included
in the base OS, or easily integrated at boot time as an
add-on.

Provided that all these requirements are satisfied, the
design of the base OS could follow maintainability-focused
architectural choices. Consequently, the following advanta-
geous practices were implemented:
• The image was optimized for small size. The uncom-

pressed core image is 260MB, and the Mellanox OFED
packages add an additional 90MB.

• The contents of the base OS image are intended to re-
main unchanged after the post-boot node differentiation
process is completed. Consequently, the yum package,
its dependencies, and the metadata stored in the RPM
database could all be removed. While “hot-patching”
the image is possible, this practice is intended to only
be used for applying critical security changes. Changes
to the base OS image should be implemented through
a complete image rebuild.

B. Base OS Image Management Approach

The traditional method of building images on midrange
systems involves a combination of robust platform-
management tools and manual, iterative changes. Such an
image management process on a cluster managed with
xCAT would begin with the creation of a basic image

8A project to determine if GPFS and Mellanox OFED could be made
functional under a minimal Busybox and uClibc-based userland environ-
ment was not undertaken, but is potentially useful.

with the xCAT genimage utility. Subsequently, system
administrators would modify the contents of the generated
image to bring it into accordance with system policy, and
then use the xCAT packimage utility to prepare it for
booting. Over time, the image directory would be manually
modified many times.

This process enables rapid changes, but also carries mul-
tiple disadvantages. It provides no change management or
change logging, unless the modifying system administrator
manually maintains a detailed changelog. Even then, the
full scope of the changes, including exactly which files
were modified and exactly how they were modified, are not
known unless extraordinarily detailed changelogs are kept.
Additionally, no programmatic method exists to recreate
the image or revert changes. This situation leaves system
administrators without a good understanding of how the
image has changed over time.

Consequently, performing several common maintenance
tasks becomes difficult. Upgrading the image to a new minor
OS release, for example, will require a new genimage
invocation followed by manual migration of all system-
specific changes. Subsequently, system administrators must
modify the new image to meet system policy without ex-
haustive knowledge of the exact changes required to do
so. Tracing which set of changes may have introduced a
problem, determining when the changes were introduced and
by whom, and rolling back those changes, all become time-
consuming tasks.

Alternatively, system administrators can choose to rebuild
the image every time it must be modified by running
the genimage utility and then applying system-specific
changes. However, this increases the time and effort required
to introduce changes, resulting in loss of flexibility. The
image_mgr utility was written to lessen the inconvenience
of this approach, allowing for full rebuilds while still en-
abling reasonably quick changes.

C. Base OS Image Management Utility

The image_mgr utility provides a standardized interface
for image creation, manipulation, analysis, and rollback.
image_mgr automates image rebuilds from original RPMs,
and every image change is accompanied with a full rebuild
to ensure consistency and reproducibility. System adminis-
trators implement system-specific changes to the image by
directly modifying the image_mgr script. image_mgr
also provides a size reporting mechanism to measure the
impact of changes on the size of the image.

The image_mgr model separates the image into two
parts: the core image, which is active on all nodes,
and add-on packs, which are sets of files that can
be activated at boot time on subsets of nodes via xCAT
postscripts.

To minimize the size of the core image, software sets of
significant size which are neither needed nor desired on all

node types are packaged as add-ons . Good candidates for
add-ons are software packages that fulfill niche use cases
and are either too large to integrate into the core image, or
require disruptive changes to core system software packages.
Examples of add-ons built at NERSC are CernVM-FS9,
Dell OMSA, KVM, Mellanox OFED, and the OSG stack.

In addition to maintainability improvements, this model
enables the use of a single boot image across a multi-
purpose cluster. The same minimal core OS image can be
used for compute nodes, login nodes, and service nodes
of all parent clusters. All customizations to accommodate
the parent clusters’ specific needs are handled at the Node
Differentiation layer.

The image_mgr script creates well-defined interfaces for
image building and management. The image_mgr utility
exposes a set of subcommands for image creation and
management: create, tag, list-tags, and pack. The
create subcommand builds an image with genimage,
applies a set of site-specific customization shell functions,
and then commits the resulting image to the “trunk” area of
a Subversion repository with FSVS, as shown in Figure 2.
Any revision of the trunk can be “tagged” with the tag
subcommand as a potential production release. The pack
subcommand checks out any tag and then uses the xCAT
packimage utility to prepare that particular tag as the
production base OS image.

The create subcommand creates a new image and
checks it into the appropriate trunk area of the FSVS
repository.

image_mgr create -p mendel-core.
prod -o SL6.3 -a x86_64 -m "Test
build" -u user

Once a desired build is achieved, the tag subcommand
can mark the current trunk as a potential production image.

image_mgr tag -p mendel-core.prod
-o SL6.3 -a x86_64 -u user1

image_mgr list-tags -p mendel-core
.prod -o SL6.3 -a x86_64

2013-03-01-14-13-45-RELEASE-by-user
2013-02-27-11-10-02-RELEASE-by-user2
...

The pack subcommand can mark any tag as the pro-
duction image, and use the xCAT packimage utility to
transform the image into a bootable state.

9CernVM-FS, often shortened to CVMFS, is a FUSE-based caching
HTTP filesystem used extensively by the ATLAS project on the PDSF
system. http://cernvm.cern.ch/portal/startcvmfs

image_mgr pack -p mendel-core.prod
-o SL6.3 -a x86_64 -t

2013-03-01-14-13-45-RELEASE-by-
user1

VI. NODE DIFFERENTIATION LAYER

The Node Differentiation layer is responsible for bringing
a node that has been booted into the Base OS image into
compliance with the parent system’s configuration require-
ments. Mendel provides three differentiation methods at this
layer: system-specific add-ons to the Base OS image,
xCAT postscripts, and Cfengine rules.

The structured language of Cfengine rules makes them the
preferred method for describing differentiation requirements.
Consequently, Cfengine not only maintains promises on all
nodes, but also forms a core component of the node boot pro-
cess. This significantly extends the use of Cfengine beyond
its traditional boundaries. Cfengine rules install and maintain
system-specific configuration files, such as authorization and

/..The root directory of the repository

netboot/

SL6.3/...OS version

x86_64/..Architecture

...

mendel-core.prod/..................... Image name

tags/

2013-03-01-14-13-
45-RELEASE-by-user/

rootimg/

add-ons/

kvm/

...

build-info/

image_mgr.shThe build script

statsBuild statistics

...

...

2013-02-27-11-10-
02-RELEASE-by-user2/

...

trunk/

rootimg/

add-ons/

kvm/

mlnx_ofed/

...

build-info/

image_mgr.sh

SL6.2/

...

Figure 2. An abbreviated layout of a FSVS repository for netboot images
managed by the image_mgr utility.

authentication configuration (such as nslcd.conf) and
limits.conf.

Policy management cases not easily implemented with
Cfengine rules are handled with xCAT postscripts. These
postscripts perform functions such as mounting filesystems
from local disks, mounting appropriate GPFS filesystems,
setting up network interface IP aliases for participation in
a load-balancer pool, and verifying that a node’s firmware
settings and disk layout are consistent with parent system
policy.

The third method, add-ons , are intended for use only
when xCAT postscripts and Cfengine rules are insufficient.
An add-on can be used to add software required by only
one parent system. For example, an add-on provides the
CernVM-FS software package to Mendel nodes belonging
to the PDSF parent system.

Once the Node Differentiation process is complete, the
appropriate batch execution daemon is launched, and parent
system jobs can begin running inside CHOS environments.

VII. CHOS LAYER

A 2004 paper [1], by Shane Canon and Cary Whitney
of NERSC, describe the design and implementation of the
CHOS software package, which combines a Linux kernel
module, a PAM module, and batch system integration code
to concurrently and seamlessly support multiple Linux user-
land environments on a single Linux system. The CHOS
utility was developed to provide customized computing
environments to the diverse projects that share the PDSF
system. These projects often rely on application stacks which
are only certified or tested on a single Linux distribution
release. On PDSF, CHOS has been in continuous production
use since 2004, and currently supports SL 6.2 and 5.3
environments on a common SL 6.2 base system. Since
its introduction on PDSF, CHOS has served as a versatile
and robust method to provide customized computational
environments, allowing administrators to support multiple
projects while maintaining a minimal base OS image.

The CHOS kernel module manages a contextual symbolic
link at /proc/chos/link, and maintains a mapping
between process IDs and /proc/chos/link link tar-
gets. The link target is dependent on the CHOS context
of the dereferencing userland process, and points to the
root directory of the selected CHOS environment. Addi-
tionally, the kernel module provides a userland interface
through which unprivileged users may set the target of
/proc/chos/link from among a set of allowed targets
managed by the system administrators, and request to be
chrooted into the /chos/ directory . The /chos/ di-
rectory is managed by the system administrator, and contains
symbolic links pointing through /proc/chos/link, a
bind mount of the real root filesystem, and mounts of all
shared filesystems. The construction of the /chos/ direc-
tory allows for the maintenance of only a single chroot tar-

/..The real root directory

chos/........................ User applications are chrooted into this
directory.

bin → /proc/chos/link/bin

etc → /proc/chos/link/etc

lib → /proc/chos/link/lib

proc → /local/proc/

tmp → /local/tmp/

var → /local/var/

dev → /local/dev/

local/................... This directory serves as a mountpoint
for the real root directory, so that it is
available within CHOS environments.

gpfs/.................... Shared filesystems that should be avail-
able within CHOS environments should
be mounted on directories within /chos/.

(a) The /chos/ directory with no CHOS context set

/..The real root directory

chos/............................... The common chroot directory.

bin → /proc/chos/link/bin → /os/deb6/bin/

etc → /proc/chos/link/etc → /os/deb6/etc/

lib → /proc/chos/link/lib → /os/deb6/lib/

proc → /local/proc/

tmp → /local/tmp/

var → /local/var/

dev → /local/dev/

local/.................... Bind mount of the real root directory.

gpfs/....................... Mountpoint for a shared filesystem.

(b) /chos/ within the CHOS=deb6 context

/..The real root directory

chos/............................... The common chroot directory.

bin → /proc/chos/link/bin → /os/sl6/bin/

etc → /proc/chos/link/etc → /os/sl6/etc/

lib → /proc/chos/link/lib → /os/sl6/lib/

proc → /local/proc/

tmp → /local/tmp/

var → /local/var/

dev → /local/dev/

local/.................... Bind mount of the real root directory.

gpfs/....................... Mountpoint for a shared filesystem.

(c) /chos/ within the CHOS=sl6 context

Figure 3. Abbreviated /chos/ directory layout showing the effect of
the contextual CHOS symbolic link within different CHOS environments.
Figure 3a shows the /chos directory when no CHOS context is set.
Figure 3b and figure 3c show the contextual appearance of the /chos/
directory for processes in the deb6 and sl6 environments, respectively.

get directory which can assume multiple personalities within
different CHOS contexts. Figure VII shows the appearance
of an example /chos/ directory in two different CHOS
contexts.

Users may switch among CHOS environments by in-
voking the chos userland utility; however, most users

enter CHOS environments through one of two transparent
methods: pam_chos or the CHOS batch system integration
mechanisms. pam_chos is a PAM module which imple-
ments PAM session management and places the user into
a CHOS environment. pam_chos determines the appropri-
ate CHOS environment either through the user-controlled
$HOME/.chos file, or through the default environment
from the /etc/chos file, and is generally invoked during
SSH session establishment. These methods provide trans-
parent integration to all users, and additional control to
advanced users.

CHOS provides separation between the user compute
environment and the base OS environment. In nearly all
cases, interactive user sessions and batch jobs are imme-
diately chrooted into /chos/, and users rarely interact
directly with the base OS. As a result, system administrators
can make significant modifications to the base OS without
disrupting the experience of users on the system. Similarly, a
user compute environment can be modified without affecting
other environments or the base OS. Creating a new user
compute environment based on the newest Fedora, SL, or
Debian release is possible with no significant changes to
the base OS. Additionally, since users can easily switch
among environments, users can test and port code to new
environments while concurrently running production code in
a certified environment.

Based on the success of this approach on PDSF, NERSC
chose to use the CHOS utility on Mendel to provide user
environments to PDSF, Carver, Genepool, and NX users, on
top of the unified Mendel base OS.

CHOS had been used with great success to handle the
diverse, but exclusively serial and UGE-managed, workloads
on PDSF. Consequently, supporting the PDSF and NX
environments on Mendel required no significant changes.
Supporting the Carver and Genepool workloads, however,
raised new challenges:

• The Genepool and Carver batch environments (UGE
and TORQUE+Moab, respectively) handle multi-slot
and multi-node jobs, in contrast to the exclusively
serial workload on the PDSF system. The CHOS batch
system integration code needed to be enhanced to
integrate with the multi-slot job launching process.

• Multiple job submission workflows on the Genepool
system involve passing a complex set of command-line
arguments, including shell redirection characters, to the
UGE qsub job submission utility. The CHOS UGE
starter_method needed extensive enhancements to
enable seamless handling of these cases. Additionally,
the qlogin UGE utility, used to establish interactive
batch sessions, does not use the starter_method
by design, and was reimplemented as a wrapper script
around the qrsh utility.

Table I shows the CHOS environments in use on Mendel.

Name OS Purpose

sl62 SL6.2 Production PDSF SL6.2 computational
environment

sl53 SL5.3 Production PDSF SL5.3 computational
environment

sl5carver SL5.5 Production Carver computational environ-
ment

sl6nx SL6.3 Production environment for the NX ser-
vice, featuring commercial NX server
software and a full-featured KDE4 desk-
top stack

deb6gp Debian 6 Production Genepool computational envi-
ronment

deb6gplogin Debian 6 Production Genepool login node environ-
ment

deb6dev Debian 6 Full-featured Debian 6 environment re-
served for staff testing and benchmarking

sl6dev SL6.3 Full-featured SL6.3 environment reserved
for staff testing and benchmarking

Table I
CHOS ENVIRONMENTS IN USE ON MENDEL

To support the Genepool system, two CHOS environ-
ments, both based on Debian 6, were created: deb6gp and
deb6gplogin, based on the existing compute and login
node images, respectively.

To support the Carver system, the sl5carver CHOS
environment, based on SL5.5, was created, based on the
existing Carver compute image.

To support the PDSF system, the existing sl53 and sl62
CHOS environments were used verbatim.

To support the NX servers, the sl6nx environment was
created.

A. CHOS Batch System Integration

Integration of parallel jobs with TORQUE and UGE can
be performed using one of two methods. The first method,
termed “loose integration” by UGE, involves providing the
first task of the job with a list of all slot locations allocated to
that job. The job itself is responsible for launching processes
within those slots. For example, a TORQUE job can be
passed a list of slots via the $PBS_NODEFILE environment
variable, and can then launch processes within these slots via
SSH.

The second method, termed “tight integration” by UGE,
utilizes facilities built into the batch system to launch all
job processes. Both TORQUE and UGE provide interfaces
to expose this functionality. While applications must be
modified to support a batch system’s tight integration fa-
cilities, tight integration allows for far greater control over
job process launches and management. OpenMPI’s module
framework architecture provides ras (Resource Allocation
System) frameworks to enable integration with TORQUE’s
TM (Task Manager) API and the UGE qrsh mechanism.

A successful CHOS-integrated job launch requires all job
processes on all nodes to be launched within the CHOS
environment. For serial jobs, this is accomplished by con-
figuring a starter_method (UGE) or job_starter
(TORQUE) that launches the job within the appropriate
CHOS environment.

CHOS integration for common loose integration cases is
handled by the pam_chos PAM module, as the SSH server
daemons are configured to utilize the PAM stack for session
management.

Support for the tight integration case with UGE was also
provided through existing starter_method functional-
ity. However, tests with TORQUE 4.1.4 indicated that the
job_launcher was only used to handle the launch of the
first process of each job, and not for subsequent process
launches through TM. To remedy this, NERSC developed a
patch to TORQUE’s pbs_mom which alters the behavior of
TM’s process spawning to wrap all process launches with the
job_launcher. The patch has been accepted, with minor
changes, to the TORQUE 4.1-dev branch.

VIII. FUTURE WORK

A. CHOS Development
The fundamental design of CHOS has remained un-

changed since its 2004 release. Since then, the rapid pace
of Linux kernel development has required NERSC staff to
port the CHOS kernel module to new Linux kernel versions.
This porting effort has remained confined to the set of kernel
versions used in production with CHOS by NERSC. The
CHOS kernel module currently supports the x86 64 EL5
(2.6.18) and EL6 (2.6.32) kernels released with versions 5
and 6 of Scientific Linux, respectively.

Additionally, until the release of Scientific Linux 6, the
CHOS kernel module could be loaded into unmodified
kernels from the Scientific Linux kernel release families.
The Scientific Linux 6 kernel family, however, is built with
the CONFIG_DEBUG_RODATA Kconfig option set. This
option sets the text segment of kernel memory read-only,
which disrupts the CHOS kernel module loading process.
Consequently, the EL6 kernel must be rebuilt with this
option disabled for CHOS to function, which removes a
useful security enhancement and increases the system ad-
ministration burden on CHOS-enabled systems.

To remedy this situation, investigation is underway to
determine if the Namespaces10 features available in re-
cent Linux kernel versions could serve to replace the
/proc/chos/link contextual symbolic link and conse-
quently reduce or remove entirely the need for the CHOS
kernel module. An experimental branch of CHOS11, removes
the kernel module and instead relies on Linux Mount Names-
paces to construct contextual sets of bind mounts within the
/chos/ directory.

10http://lxc.sourceforge.net/index.php/about/kernel-namespaces/
11http://github.com/scanon/chos/tree/ns

/

chos/.......................................Mountpoint for /os/deb6/

bin/...This is /os/deb6/bin/

etc/...This is /os/deb6/etc/

lib/...This is /os/deb6/lib/

proc/......................................Mountpoint for /proc/

tmp/...................................Mountpoint for /local/tmp/

var/...................................Mountpoint for /local/var/

dev/...................................Mountpoint for /local/dev/.

local/..........................Mountpoint for the real root tree

gpfs/..........................Mountpoint for a shared filesystem

(a) /chos/ under the experimental Mount Namespaces CHOS branch within
the CHOS=deb6 context

/

chos/...Mountpoint for /os/sl6/

bin/..This is /os/sl6/bin/

etc/...This is /os/sl6/etc/

lib/...This is /os/sl6/lib/

proc/......................................Mountpoint for /proc/

tmp/...................................Mountpoint for /local/tmp/

var/...................................Mountpoint for /local/var/

dev/...................................Mountpoint for /local/dev/.

local/..........................Mountpoint for the real root tree

gpfs/..........................Mountpoint for a shared filesystem

(b) /chos/ under the experimental Mount Namespaces CHOS branch within
the CHOS=sl6 context

Figure 4. Abbreviated /chos/ directory layout under the experimental
Mount Namespaces CHOS branch. Figure 4a and Figure 4b show the
appearance of this directory within the deb6 and sl6 CHOS contexts,
respectively.

The responsibilities of handling bind mounts, placing
users into the /chos/ directory with pivot_root,
and handling environment teardown, which involves a
pivot_root back into the real root filesystem and un-
mounts of all the contextual bind mounts, are moved into
the chos userland utility.

B. image_mgr Development

The image_mgr utility provides effective management
of a single Base OS image. However, changing the image
requires modifying the image_mgr utility itself. When
image_mgr was used only on the PDSF system, this
requirement did not create maintainability problems. How-
ever, image_mgr is now used on PDSF and Mendel.
Consequently, two divergent versions of image_mgr are
now in use. To expand the use of image_mgr to more
systems, the script requires architectural modifications to
support handling multiple base OS images.

C. CHOS Environment Management

While the image_mgr utility provides a structured in-
terface for managing the base OS image, no such facility

exists for creating and altering the CHOS environments. The
image_mgr interface could be adapted to provide such a
facility, bringing automatic change logging, rollback, and
FSVS versioning to CHOS environment management.

IX. CONCLUSION

The layered Mendel combined cluster model developed
at NERSC provides a framework through which the work-
loads of multiple Linux computational systems and support
servers, which differ significantly in design, implementation,
and purpose, can be processed on a unified hardware and
software platform. While this approach introduces additional
complexity, it provides separation between the software
environments used for user applications and those used for
system management, allowing all such environments to be
architected exclusively for their intended uses. Additionally,
Mendel nodes can be easily reassigned to a different parent
system by changing xCAT and Cfengine, modifying local
disk partitions and firmware settings, and rebooting the
affected nodes. The resulting platform is sufficiently flexible
to adapt to changing user needs while minimizing user
impact and systems management overhead.

ACKNOWLEDGMENT

Substantial credit for the successful deployment of the
Mendel platform belongs to several members of the NERSC
staff:
• Doug Jacobsen designed and developed the enhance-

ments to the Genepool UGE starter_method to ac-
commodate complex qsub invocations, and the reim-
plementation of qlogin in terms of the qrsh utility.

• Nick Cardo and Iwona Sakrejda provided construc-
tive feedback regarding the implementation of the
image_mgr utility, and concrete suggestions for im-
proving the utility.

• Shane Canon, the initial CHOS developer, provided
significant guidance during the CHOS deployment on
Mendel.

• Zhengji Zhao performed many of the initial software
tests on the Mendel platform. These tests were instru-
mental in identifying several key configuration deficien-
cies very early in the deployment phase.

• Brent Draney, Damian Hazen, and Jason Lee pro-
vided extensive assistance integrating Mendel into the
NERSC site network.

This work was supported by the Director, Office of
Science, Office of Advanced Scientific Computing Research
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

REFERENCES

[1] R. S. Canon and C. Whitney. (2004) CHOS, a method for
concurrently supporting multiple operating systems. [Online].
Available: http://indico.cern.ch/getFile.py/access?contribId=
476&sessionId=10&resId=1&materialId=paper&confId=0

