

CUG 1995 Fall

 Proceedings

163

High Performance Communication in Large
MTU Networks

Peter W. Haas

, Rechenzentrum Universität Stuttgart (RUS),
Stuttgart, Germany

ABSTRACT:

European Projects such as RACE 2031 PAGEIN – multimedia supported collab-
orative supercomputing, simulation and visualization in aerospace research and industry – are
essentially dependent on local, national and international networking facilities. Previous obser-
vations of large MTU (maximum transmission unit) networks, like UltraNet and HIPPI, noted a
number of shortcomings in the implementation of host protocol stacks and user applications. This
paper will present a thorough analysis of network metrics in HIPPI local area networks that have
been carried out in the context of PAGEIN. By inspecting actual source codes, a number of guide-
lines will be derived that yield both better understanding and substantial throughput improve-
ments with most TCP/IP and UDP/IP based applications.

1 Introduction

The University of Stuttgart Regional Computing Center
(RUS) runs one of the major supercomputer-network
complexes in Germany. The present RUS computer configura-
tion comprises a Cray C-94/T-3D compute server, a combined
Cray Y-MP file/tape archive server, an Intel Paragon massively
parallel processor and a number of parallel workstation clusters.
A large visualization laboratory deals with the rendering and
animation aspects of comprehensive data sets that commonly
evolve out of scientific/technical simulations. The networking
infrastructure, necessary to interconnect all these systems,
ranges from Ethernet, FDDI, and local ATM to the Gbit/s
crossbar-switched High Performance Parallel Interface (HIPPI)
network.

Experience with Gbit/s networks is available at RUS since
the first operation of Ultra Network’s UltraNet in 1989. Super-
computer protocol stack performance has been carefully
analyzed during that time for all sorts of networks, and new
networking technologies are constantly evaluated and
compared against this data base. An overview of this work may
be found in [1], [2], [3], [4], [5], [6], [7].

2 Typical Data Transfer Rates

In this chapter we want to present a tabular overview of
typical user applications within an university computer center
and their respective performance over various types of network
media. The applications are separated into two classes
according to bandwidth and datagram size requirements. As can

be seen from

Table 1

, the first class mostly contains low-band-
width services, like electronic mail, terminal emulation and
shared file systems using the Network File System (NFS)
protocol. The transfer rates given in

Table 1

 are neither thrilling
nor would they require the use of an exceptionally fast network,
like HIPPI. With the exception of the NFS applications they
even could be accomodated by a single 10-Mbit/s Ethernet.
However, the last line clearly marks the transition point where
the scope of the Fibre Distributed Data Interface (FDDI) will be
left: Not so much due to a general lack of network bandwidth,
but simply due to the dramatic reduction in the number of NFS
transactions that comes along with the much larger datagram
size available in a HIPPI network.

In the second class of applications, contained in

Table 2

, the
HIPPI network constantly develops an order of magnitude
increase in throughput over FDDI. We will see later on that this
improvement is only partially due to the higher line rate of
HIPPI. In the FTP and IPC case e.g., the major contribution
comes from the adoption of 60-Kbyte datagrams in conjunction
with a 360-Kbyte TCP flow control window. One is tempted to
say that TCP flow control windows of similar size could be used
over an FDDI network. However, in that case the TCP segment
will be 4 Kbytes only, and on the order of 90 datagrams would
be in flight for a single TCP connection. There is hardly any
FDDI interface on the market that can deal with such an enor-
mous amount of outstanding datagrams without resorting to
hardware flow control on the physical level. Unfortunately,
neither the Ethernet or next generation Fast Ethernet, nor the
FDDI protocol have anything in mind with physical-level flow

164

CUG 1995 Fall

 Proceedings

control. Even worse, switching between multiple
segments/rings in the latter case goes without any protocol
support at all. It doesn’t matter whether Mac-layer bridges or
network-layer routers are used for switching. In both cases the
switching device has to temporarily buffer the sum of all flow
control windows that belong to the multiplicity of simulta-
neously active transport connections going across.

Looking at the amount of buffer storage that is usually avail-
able with either multiport bridges or IP routers, less than 10
Mbytes in any case, it becomes readily apparent why the HIPPI
protocol tries to avoid storage within switching devices at all.

Here the end systems themselves are responsible for the alloca-
tion and administration of buffer queues, if necessary, and an
end-to-end hardware flow control scheme is used to prevent
destination overflow.

Figure 1

 summarizes the properties of a
crossbar-switched HIPPI network. The dual-simplex HIPPI
links are arbitrated and flow-controlled independently at 800 or
1600 Mbit/s, respectively. Although there is no physical limita-
tion for the length of a HIPPI frame in general, fairness of
access to a shared medium dictates that a common upper bound
should be obeyed. With regard to IP traffic over HIPPI, the
maximum frame length will be exactly 64 Kbytes which allows

Application Ethernet FDDI

0.01 0.01 0.01

[Kbyte/s]

HIPPI

 [Kbyte/s]

[Kbyte/s]

Electronic Mail

3 - 10 3 - 10 3 - 10World Wide Web (WWW)

0.3 0.3 0.3ASCII Text Transfer
10 - 100 10 - 100 10 -100WYSIWYG-Text Processing

15 15 15Character Input
30 30 30Scrolling in Documents
50 50 50Rapid Mouse Movement

Archiving

200 500 1.000Tape Archiver (tar)

Network File System (NFS)

800 1,800 2,000Standard NFS (Read)
100 400 3,000Standard NFS (Write)
800 2,000 8,000NFS Version 3 / Cray NFS

0.3 - 200 0.3 - 400 0.3 - 1,000Terminal Emulation

Table 1: Typical Data Transfer Rates, Class 1

Application

 [Kbyte/s] [Kbyte/s] [Kbyte/s]

File Transfer (FTP)

Distributed Mass Storage

- - - 10,000 75,000RAID-Systems using IPI-3

Interproc. Communication

1,000 10,000 72,000Memory-to-Memory (TCP/IP)

Moving Pictures, Television

200 200 - - -Video Codec, MPEG 1
- - - 2,500

2)

2,500

2)

Digital HDTV, MPEG 2
- - - - - - 95,000Framebuffer, 1280 x 1024 Pix

800 3,000 35,000Binary Mode
400 2,000 20,000ASCII-Mode

1)

 The usable data rate is 100 Mbyte/s or
200 Mbyte/s per host connection

2)

 estimated value

Ethernet FDDI HIPPI

1)

Table 2: Typical Data Transfer Rates, Class 2

Framing Protocol
(24)

Link Encapsulation
(0 - 65280)

LLC

65536 bytes max.

(bytes)

Minimum Frame Length: 8 bytes
Maximum Frame Length: 65536 bytes (LLC encapsulated IP, arbitrary length otherwise)
Maximum Roundtrip Time:
Access Mechanism: Arbitrated End-to-End Connection Request/Indication
Line Signal Encoding: plain 4-byte word with byte and burst parity, 20B24B-code for Serial_HIPPI
Media Signaling Rate: 800/1600 Mbit/s per simplex path

Node A Node B

n * 500 ns + wave propagation time (n: number of HIPPI crossbars)

Fill
(0 - 2047)

Hardware Flow Control: 64-Kbyte max Credits in 1-Kbyte increments, outband, end-to-end
Switching Support: Outband I-Field with physical/logical addresses

Cross-
bar

parallel copper
single mode or
multimode fiber

(8) (8)
IP Data

Outband I-Field

(4)

Hardware Flow Control

Figure 1: Characteristics of a crossbar switched HIPPI network

CUG 1995 Fall

 Proceedings

165

for an IP payload of 65280 bytes, [8]. Therefore any individual
IP host is supposed to release a HIPPI connection after no later
than 660

µ

s. It should be noted that there is essentially zero
storage along any of the (many) concurrent data paths going
through a HIPPI crossbar. Therefore, once a point-to-point
connection has been setup between Nodes A and B, the latency
of a HIPPI switch will be effectively zero (500 ns in practice).
It is also interesting to note that outband signalling will be used
during the connection arbitration phase. This means that the
functionalities of connection arbitration and data path
cutthrough may be implemented in separate devices. Therefore,
if an external arbiter is used, the switching of the data path may
be accomplished by a pure photonic device, e.g. an all-optical
crossbar, [9], or an optical star using wavelength division multi-
plex techniques, [10].

3 The RUS Network Configuration

The examination of network performance on the user appli-
cation level, conducted in

Chapter 2,

will yield some basic
understanding of the construction principles that have been

observed in the topmost network configuration at RUS. Of
course, a full representation of our network would not be very
helpful in discussing the major design goals, therefore

Figure 2

has been simplified to a large extent. All low-speed and wide
area networks have been left out. For the same reason we are not
addressing our experimental ATM network, although it is quite
large and handles a considerable amount of production traffic.

The university campus is covered by multiple FDDI rings
which are switched on the MAC layer by doubly redundant
GIGA crossbar switches (Digital Equipment). The campus
itself is made up of two major sites, one located in downtown
Stuttgart, the other one in the suburb of Vaihingen where most
of the institutes reside. A total of twentyfour FDDI rings are
needed to cover this area and the links in between. Whereas the
university institutes access individual FDDI rings by means of
FDDI concentrators or Cisco IP routers, that are fanning in and
out mostly low-speed, low-MTU traffic, IP routing in a 24-ring
FDDI backbone is not likely to work because of performance,
cost and latency constraints. The DEC GIGAswitch has been
found to offer an acceptable, though not perfect solution to

RS/6000RS/6000

Visualization

GIGA
switch 1

YMP-2E

C-94RS/6000

DXE800

Conc.

FEO-1

Cisco 1

Cisco 4

Cisco 3

Cisco 2

233.90

233.35

233.217

17.35

18.23

18.90

18.10

18.20

18.110

18.40

18.82

18.217

FDDI

233.1

Dxelan1

Campus Stuttgart-Vaihingen

RUS

Paragon

BCP

23
3.

18
1

IP-Router

Serial HIPPI

FDDI/HIPPI

233.2

18.118.2

C-92

233.36

T-3D

32 x 800 Mbit/s

IP-Router
FDDI/HIPPI

NSC
PS32

ES
1000

800 Mbit/s Parallel HIPPI

Campus

Conc.

Stuttgart-City

HIPPI
Crossbars

Cray C-90

16 x 800 Mbit/s

Conc.

2

2

23
3.

18
2

233.34

1.8 km, 1.2 GBaud

Dxelan2

RS/6000RS/6000

SPARC10

RS/6000RS/6000CS1000
Chen Systems
File Server

Sun File Server

Figure 2: The RUS Computer and Network Configuration

166

CUG 1995 Fall

 Proceedings

switching. We use two of them in a balanced crossconnect
topology, either one switching 12 out of 24 rings at full speed.

There is yet another backbone in

Figure 2

 which is made up
by the HIPPI network. Quite different from the FDDI complex,
this backbone does not act as a turntable for transient traffic. Its
main purpose is to provide a perfect, unimpeded networking
environment for server machines of all kinds at the 800 Mbit/s
level. More closely, perfect means:

• low latency (< 1

µ

s connection setup time on average)

• loss free (zero datagram drops)

• large MTU (65496 bytes max of IP data)

It is interesting to note the extremely low average value for
the connection setup time of ~ 1

µ

s that has been observed with
any of the compute servers (Cray C-90s, IBM RS/6000) or file
server (Cray YMP). Of course, traffic entering the HIPPI
network through any of the FDDI/HIPPI routers is not likely to
add more than 10-percent of network load. So the chances for a
HIPPI host to arbitrate a busy destination port, due to traffic
originating from the FDDI network, are very low, indeed.
However, this not so clear when destination blocking for local
HIPPI traffic has to be considered. In this case, we both
encounter high volume traffic and maximum sized datagrams at
the same time. Obviously, for a zero-buffer switch the best solu-
tion is to increase the number of outgoing channels to severely
loaded destinations. Most HIPPI switches know how to do load
distribution over several parallel links to a common destination.
This technique has been applied to the Cray YMP NFS server,
the university’s central data migration facility. In this case, the
switch is authorized to use whatever link is currently available to
the destination. It does so by choosing from a prespecified list of
channels using various selection methods, e.g. priority, round
robin or random access. With massively parallel machines
(MPPs), like the Intel Paragon, the performance of a single
network connection might not be adequate to meet the available
traffic rates of other hosts in the network. Software-striping of
outgoing parallel channels on the MPP is a very efficient solu-
tion. Again, on the reverse direction the switch state machine
may be used to do the striping in hardware, so the peer applica-
tion involved in the MPP connection does not need to know
about striping at all.

UDP/IP fragmentation, needed for all versions of NFS, may
be a big concern when the interworking between HIPPI and
successively lower MTU networks, like FDDI and Ethernet, has
to be considered. Although there is no specific rule where IP
fragmentation should take place, the safest solution is to do it in
the host that originates the transport connection rather than to
leave it to subsequent IP routers in the network. This solution
puts some extra burden on the hosts themselves, also
path-dependent MTU values have to be administered, however,
the big advantage is that the sequence of fragmented IP data-
grams will be preserved under all circumstances. This is
certainly not true for a Cisco router based IP network, where IP
datagrams awaiting fragmentation may be delayed significantly

over those that simply need to be forwarded. In general, host
system processors will be at least as fast as (and cheaper than)
protocol processors within dedicated routing equipment, so host
fragmentation is the only way that is going to scale. We have
found that most workstations, e.g. IBM RS/6000, SPARC10,
may be favorably used for IP routing between HIPPI and lower
speed networks.

4 TCP/IP, FTP and NFS Performance

The previous discussion has raised sufficient interest in the
question what kind of variables are affecting protocol perfor-
mance and how they do that in detail. It is wise to restrict
ourselves to the investigation of very simple applications and to
the optimization of the most dominant variables which the
system programmer and eventually the user can actually influ-
ence. We will first concentrate on the TCP/IP memory to
memory transfer which is almost entirely coded inside the oper-
ating system kernel. Here the major variables affecting perfor-
mance may be summarized as follows:

1. Size of data copied from user space to kernel space
2. Number of data copies and checksum operations
3. Maximum transmission unit (MTU) of physical media
4. Size of kernel buffers for sending and receiving
5. Size of read()/write() data from user application
6. Size of TCP window scale option
7. Host system I/O architecture
8. Type of operating system

Not all of these variables, e.g. 2., 7., 8., may be addressed by
the system administrator or the user programmmer. In practice,
however, it suffices to deal with a small subset of variables that
is outlined by the ordinal numbers 3., 4., 5. and 6.

4.1 Memory to Memory TCP/IP

In

Figure 3

 we present three performance graphs that show
the TCP/IP memory to memory throughput between two Crays
as a function of the user buffer size, i.e. the amount of data the
user is copying from the HIPPI source to the HIPPI destination.
Starting with the lowest performance graph, we use the Unicos
standard parameter settings: IP-MTU=65496 byte, socket buffer
size of 64 Kbyte, and hence a TCP flow control window of 64
Kbyte max. The resulting throughput is almost constant at 20
Mbyte/s over the entire range of user buffers. Looking at the
TCP peer to peer round trip time, RTT=3.1ms, we can’t simpl y
have more throughput than given by the socket buffer size
divided by RTT. In addition, by exploring the peak for the
10-Kbyte user buffer it seems that the kernel could be much
faster in copying the user data into the kernel’s socket buffer, if
only we had a bigger socket buffer.

In the next graph we do nothing else but increase the socket
buffer by a factor of six. Any user on a Cray may optionally do
this according to the default configuration of the netvar database.
We see that the kernel copy bandwidth leapfrogs by a factor of
ten, to 234 Mbyte/s, but still the sustained throughput over the
HIPPI network is close to 20 Mbyte/s.

CUG 1995 Fall

 Proceedings

167

90

80

70

60

50

40

30

20

10

0

100 1000 1000010

User Buffer (Kbyte)

M
em

or
y-

to
-M

em
or

y
T

hr
ou

gh
pu

t (
M

by
te

/s
)

1

100

124
234

TCP Window 384 Kbyte, RFC 1323

Socket Buffer 384 Kbyte, RTT 5.2 ms
Transfer Rate 72 Mbyte/s max.

TCP Window 64 Kbyte
Socket Buffer 384 Kbyte, RTT 2.7 ms
Transfer Rate 23 Mbyte/s max.

TCP Window 64 Kbyte
Socket Buffer 64 Kbyte, RTT 3.1 ms

Transfer Rate 20 Mbyte/s max.

Limits of Socket
Buffer Write (MB/s)

UDP Loss Limit
360 KB Receive

Socket Buffer

IP-MTU 65496 byte
TCP-Segment 60 KB

Packet Gap
570

µ

s

Figure 3: TCP/IP Memory-to-Memory Performance. Cray C-94 -> HIPPI Crossbar -> Cray YMP

90

80

70

60

50

40

30

20

10

0

100 1000 1000010

M
em

or
y-

to
-M

em
or

y
Tr

an
sf

er
 R

at
e

(M
by

te
/s

)

1

100

TCP Window 192 Kbyte, RFC 1323

Socket Buffer 192 Kbyte, RTT 4.6 ms
Transfer Rate 43 Mbyte/s max.

TCP Window 64 Kbyte

Socket Buffer 64 Kbyte, RTT 4.3 ms
Transfer Rate 15 Mbyte/s max.

Transmission Control Protocol (TCP)

Goal:

Cray operating point

IP Maximum Transfer Unit 65496 byte
360-Kbyte Socket Buffer yields device overflow

Figure 4: TCP/IP Memory-to-Memory Performance. IBM RS/6000 Model 590 -> HIPPI Crossbar -> Cray YMP

User Buffer (Kbyte)

168

CUG 1995 Fall

 Proceedings

In order to increase sustained throughput we have to enlarge
the TCP flow control window at least as much as the socket
buffer in the second step. So, the final graph shows the memory
to memory performance that comes along with both a scaled
TCP window, according to RFC 1323, and a TCP socket buffer
of 384 Kbyte. It is interesting to note that the full performance
of approximately 70 Mbyte/s is reached over the entire spec-
trum of user buffer sizes, down to as low as 10 Kbytes. This
ideal situation is likely to change if switches with internal buff-
ering, i.e. non-zero latency, are employed.

Please keep in mind that the IP datagram size for all these
measurements has been the TCP segment size plus the size of
the combined TCP/IP header, roughly 60 Kbytes. Decreasing
the TCP segment size below 60 Kbytes will considerably
worsen any of the individual performance graphs, as indicated
by the accompanying CPU utilization.

In

Figure 4

 we give one example for a typical workstation
performance over HIPPI. Although the discussion for the IBM
RS/6000 would pretty much follow along the same lines as in
the Cray case, the optimal parameter set might be different due
to constraints at the HIPPI device level. It is essential to have a
sophisticated socket test tool available, like tsock, that allows
for the identification of any anomalies on the network and
device level.

Although our measurements have been derived entirely from
hosts connected to a HIPPI network, the basic assumptions
should also be valid for other large MTU networks that operate
in the same speed range, like the full-speed Fibre Channel Stan-

dard (FCS) and IP over ATM using AAL5 at OC-12c speeds.
However, the connectionless FCS services (other than class 1)
and IP over ATM in general have a non-zero loss probability
that varies largely with network load and also IP datagram size.

4.2 Workstation File Transfer Protocol

The Unicos FTP model takes a number of intermediate
buffers into account that are deliberately placed between the file
and network I/O system as shown in

Figure 5

. These buffers are
used for data streaming and consequently have to be (automat-
ically) matched to the available disk and network block sizes.

 The disk copy buffer is available with most FTP implemen-
tations and is generally of an arbitrary, fixed size, e.g. BUFSIZ,
because the block size of the underlying physical disk(s) is
mostly unknown. Unicos has some recommendations towards
optimal disk block sizes for small and large transfers, based on
the file’s stat{} structure. The network copy buffer, so to speak,
is the well known TCP socket buffer and its size has been suffi-
ciently well investigated in

Chapter 4.1

 alltogether with the
need for the TCP window scale option. What’s new is the
ASCII translation buffer because block-processing character
translations with optimized routines, like memccpy(), is much
more efficient than using the GETC and PUTC character
macros.

The Unicos FTP model described above has been around for
some time, so it is supposed to be rather mature. However, it
would be interesting to see how ordinary workstation FTP

Network

Striped
Disks

Disk
Copy
Buffer

ASCII
Translation

Buffer

TCP
Socket
Buffer

[diskblocksize]
1)

[6*tcp_maxseg]

[diskblocksize] receive

[2*diskblocksize] send

TCP/
IP

mbufs

HIPPI
Driver
Device
Buffers

1) statb.st_size
(-> statb.st_blksize
-> statb.st_oblksize)

[RFC 1323] [# of bufs]

/* Excerpt of ftp.c, AIX 2.5. Treatment of
ASCII-type Transfers */

 switch (type) {
 case TYPE_A:
 switch (form) {
 case FORM_N:
 case FORM_T:
#ifndef TUNEBUFS /* Original AIX Code */
 while ((c = getc(fin)) != EOF) {

 if (c == ‘\n’) {

 DOPUTC(‘\r’);
 }
 DOPUTC(c);

Figure 5: Unicos Client File Transfer Parameters

CUG 1995 Fall

 Proceedings

169

implementations behave in a large MTU environment and how
they could benefit from the Unicos FTP version.

Figure 6

 contains FTP performance graphs that have been
gathered from a heavily loaded IBM RS/6000 batch machine.
The topmost graph shows the binary put according to the
Unicos model; there is an excellent match between the file
system read ahead and the socket buffer write for file sizes up
to 1 Mbyte. Actually, the FTP transfer seems to proceed faster
than the disk can be read physically. With the AIX operating
system there is no recommendation of an optimal disk block
size. A first approach would be to match the disk copy buffer to
the TCP socket buffer which in turn is six times the TCP
maximum segment size, both peers had settled upon during
connection setup. With an IP-MTU close to 64 Kbyte,
TCP_MAXSEG tends to be negotiated down to 60 Kbyte, the
next lower 4-Kbyte boundary. Looking more closely into the
TCP performance chart of Figure 4, we decide to clamp both the
socket and disk copy buffers at a maximum of 192 Kbytes.

 Reducing the TCP socket buffer to 64 Kbytes with the
binary put, reveals a very common anomaly in a network where
the TCP window on the receiver may be fully closed by just a
single incoming datagram. What happens is that the TCP
transfer resorts to start/stop-mode: the flow control window
oscillates completely between both extremes, and the resulting
network throughput will be fairly constant, approximately 10
maximum sized IP datagrams/s. Fortunately, the AIX version of
FTP uses smaller buffers by default and will not enter this oper-
ating region by accident.

The last two performance graphs show the binary get, again
for 192- and 64-Kbyte socket buffers, respectively. The receive
rates are still close to or slightly above the disk’s physical write
limit. In general, tuning the stream buffers according to

Figure
5

will yield a 50 to 100 percent improvement in a HIPPI
network. In addition, a dedicated character translation buffer
combined with highly efficient character matching routines will
speed up ASCII-type transfers by an order of magnitude.

4.3 Cray Version of NFS

We have recently analyzed the Unicos 8.0 NFS implementa-
tion in order to maximize NFS performance over HIPPI and to
prepare the proving grounds for various NFS version 3 beta
tests, [6].

Figure

7

contains a simplified representation of the system
buffers involved along the client’s NFS write path to the server.
The physical network is represented by a crossbarswitched
HIPPI LAN. Under the Unicos 8.0 operating system, servers
need user-level contexts to service multiple NFS requests in
parallel. Daemons (nfsds, for Standard NFS, and cnfsds, for
Cray NFS) provide these contexts for the server’s kernel to use.
On the client side, block I/O daemons (biods) perform asyn-
chronous I/O.

A simple UDP/IP constant rate transfer, accomplished by the
tsock test tool, will easily identify the UDP loss limit on Crays.
According to the marker in

Figure 3

, it is slightly above 50
Mbyte/s on non-dedicated systems. We have extensively
measured UDP datagram loss along the NFS write path during
production time. Since the HIPPI network is essentially free of

90

80

70

60

50

40

30

20

10

0
1 10 1000.1

File Size (Mbyte)

F
ile

 T
ra

ns
fe

r
R

at
e

(M
by

te
/s

)

0.01

100

TCP Window 192 Kbyte, RFC 1323

Bin Put: Socket Buffer 192 Kbyte

Automatic Selection of Buffers

Goal:

Cray operating point

IP MTU 65496 byte
TCP Segment 60 Kbyte

Bin Put: Socket Buffer 64 Kbyte
Bin Get: Socket Buffer 192 Kbyte

Bin Get: Socket Buffer 64 Kbyte

TCP in Start/Stop
Mode: 10 dgram/s

Limit
Local Disk

4 * DD-60, stripedSocket Buffer 360 Kbyte yields device overflow

Figure 6: Workstation File Transfer Performance. IBM RS/6000 Model 590 -> Cray YMP

170

CUG 1995 Fall

 Proceedings

User File System Writes, biods cnfsds

35

0

2

0

max

0

nfsds

0 0

??

Mux

Demux

0167

Device
Output
Queue

Device
Input
Queue

IP
Input
Queue

UDP Socket
Buffer
(Receive)

UDP Socket
Buffers
(Send)

USER

> 30 biods

Client

Server

HIPPI-PH

never

HIPPI Flow
Control

mbuf
shortage

most likely

if Socket Buffer < 480 KB

10

9

8

7

6

5

4

3

2

0

1 10 1000.1

Remote File Size (Mbyte)

M
ea

n
T

hr
ou

gh
pu

t (
M

by
te

/s
)

0.01

NFS Server Cray YMP-2E

DD-60 Magnetic Disks, 4-fold striping

Figure 8: Client NFS Write Performance

Figure 7: Datagram Loss with NFS Traffic

1

Cray C-94

wsize

 = 60 KB

IBM RS/6000

wsize

 = 8 KB

Cray C-94

wsize

 = 48 KB

Sector Size 16 KB
Async Write Mode

ldcache

CUG 1995 Fall

 Proceedings

171

loss due to Camp-on and physical hardware flow control, the
only locations where datagram loss may occur are the client’s
device output queue, and the server’s IP input queue and UDP
receive buffer. Fortunately, if there is any UDP datagram loss on
Crays associated with NFS traffic, it will almost always occur
on input to the server’s UDP receive queue. Of course, this case
may be easily handled by increasing the socket buffer receive
space appropriately.

It has been common experience for some time that NFS write
requests do perform significantly less than read requests, espe-
cially, when synchronous writes to the remote file system are
enforced. NFS writes may be done asynchronously under
Unicos 8.0, much the same way as in NFS Version 3.

Figure

8

shows the average NFS performance associated with single
asynchronous NFS writes. We see that NFS throughput on
writes increases rather dramatically with write request size.
Also, compared to reads, the rising edge in the performance
plots has been shifted towards smaller file sizes because there is
less processing overhead with a client write transaction.
Comparable NFS performance has been measured with NFS
version 3 in ATM networks recently, [11].

However, much like with ordinary TCP/IP the NFS flow
control window of 64 Kbytes is now exhausted with a single
UDP/IP datagram. The average read/write service times on our
NFS server are about 7 ms including the buffered disk opera-
tion. For a 60-Kbyte read/write transaction this yields a theoret-
ical throughput of 8.8 Mbyte/s max. at 140 transactions/s. A
four-processor server is supposed to handle 600 transactions/s
or even more, therefore, a much larger NFS flow control

window is needed to exploit more NFS bandwidth (up to 50
Mbyte/s) for a single NFS transfer.

5 Distributed Visualization Pipelines

There is a new set of user applications that are heavily
depending on networks, although most users don’t know. The
Collaborative Visualization Environment, COVISE, of the
European Union PAGEIN project will be used as an example,
[12].

The COVISE system architecture was designed to meet the
requirements of a distributed environment for scientific simula-
tion and visualization in terms of collaborative working facili-
ties with integrated multimedia support, data base like object
management, remote steering of simulations and efficient use of
highspeed networks. COVISE puts its emphasis on high perfor-
mance computing with efficient data handling between distrib-
uted modules. The available hardware resources such as file
servers, vectorizing or parallel computers, graphics worksta-
tions are transparently integrated into a single software environ-
ment allowing scientists to concentrate on computational issues
instead of dealing, e.g. with the questions of how to organize
data transfers and lockstep communicating processes on remote
machines.

We will briefly look at parts of the software architecture that
are needed to simulate and render a vortex breakdown using the
Pegase CFD package from ONERA, the computing center of
the French aerospace industry.

Figure 9

 contains a black and
white representation illustrating one time step of the vortex
breakdown, showing an ISO surface of the flow field with two
interactively controlled cutting planes next to it.

Figure 9: Simulation of a Vortex Breakdown by solving the 3D Navier Stokes Equations for an unsteady incompressible flow.
Computation performed using Pegase from ONERA.

172

CUG 1995 Fall

 Proceedings

Most currently available visualization systems follow the
visual programming paradigm. This means that a certain visu-
alization task is partitioned into subtasks each of which has
input and output data. The complete visualization pipeline is
built by choosing modules, each representing a subtask, and by
interconnecting their respective input and output ports.

Figure 10

 shows part of the COVISE visual command inter-
face, the so-called MapEditor, displaying modules belonging to
the visualization pipeline that has been composed for the simu-
lation of the vortex breakdown. In the COVISE system a
subtask is represented by a separate process. The system is
designed in a way that the user can easily start processes on
different computers. Every module is started on the computer
where it runs best, and the input and output ports are automati-
cally interconnected. In

Figure 10

, e.g. the Pegase code is
running on the Cray C-90 whereas all other modules are kept on
the same machine where the COVISE control session takes
place.

In order to demonstrate the importance of network perfor-
mance,

Figure 11

 has a look at the individual stages of a data
request that originates within the Tracer process on the Cray
YMP. The distributed data manager takes care of the shared
data space and the remote transfer of objects. In this case a
remote data object of 6 Mbyte size, actually the contents of one

cutting plane, is requested from the Pegase CFD process on the
Cray C-90.

The overall processing time for the Tracer’s data request is a
mere 130 ms, translating into an application level throughput of
49.5 Mbyte/s, best case. According to the topmost performance
graph in

Figure 3

, COVISE is adopting a 360-Kbyte TCP
socket buffer and TCP window scaling across the HIPPI
network. Of course, the responsiveness of large server
machines varies drastically with workload. The average long
term application level throughput therefore is only 12.5
Mbyte/s, with the worst case being even below 1 Mbyte/s, if any
of the communicating processes is swapped out to disk tempo-
rarily. However, even for the best case the network takes up to
75 percent of the overall data request time, although running at
55 percent of the available physical bandwidth, [13].

Conclusion

We have demonstrated that vector super computers are close
to Gbit/s speeds in the production environment if a number of
network parameters are met. Most important are the datagram
size and the amount of user data that may be in transit over the
network. Workstation processors running at 100 million
instructions per second close in on super computer network
performance, but even here the network throughput scales

Figure 10: The COVISE visual command interface. Detail showing the MapEditor displaying Modules of a visualization pipeline.

CUG 1995 Fall

 Proceedings

173

almost linearly with datagram size. Network switches should
not deal with complex protocols in the local environment,
because they are not likely to keep up with the fast moving tech-
nology of end system processors. There is an increased interest
in very low latency switches that provide a viable migration
path towards protocol-transparent, all-optical networks in the
future.

Glossary

ASCII American Standard Code for Information Interch.

ATM Asynchronous Transfer Mode

BCP Broadband Communication Products

BSD Berkeley System Distribution

CFD Computational Fluid Dynamics

CNFS Cray Network File System

CPU Central Processing Unit

DEC Digital Equipment Corporation

DXE Data Exchange

ES Essential Communications Switch

FDDI Fibre Distributed Data Interface

IBM International Business Machines

IP Internet Protocol

ISO International Standards Organization

FTP File Transfer Protocol

HIPPI High Performance Parallel Interface

IPC Inter Process Communication

LAN Local Area Network

LLC Logical Link Control

MTU Maximum Transmission Unit

NFS Network File System

RPC Remote Procedure Call

RUS Regional Computing Center, U. of Stuttgart

TCP Transmission Control Protocol

UDP User Datagram Protocol

OC Optical Circuit

PAGEIN Pilot Applications for a Gbit European Integrated
Network

XDR External Data Representation

References

[1] Haas, P., Christ, P., Rühle, R.: “User – The Stuttgart MAN Field Trial”,
SMDS Conference, Berlin, Germany, October 12–13, 1992.

[2] Haas, P.: “UltraNet Release 4: Architecture and Performance Analysis”,
Cray User Group (CUG) 1993 Fall Proceedings, pp. 185–212, Kyoto, Ja-
pan, September 20–23, 1993.

[3] Haas, P., Christ, P.: “Networking Issues in PAGEIN: The N of HPCN”,
Lecture Notes in Computer Science, Volume 37, High-Performance Com-
puting and Networking, pp. 86–93, Springer-Verlag, Berlin.

[4] Wierse, A., Lang, U., Nebel, H., Rantzau, D.: “The Performance of a Dis-
tributed Visualization System”, Proceedings of the International Work-
shop on Visualization, Paderborn, Germany, January 18–20, 1994.

Request

Tracer Data Manager

unpackobj

packobj

Data Manager

Pegase

Cray YMP Cray C-90Network

4 ms 13 ms 99 ms 14 ms

130 ms overallNetwork Transfer Time, Data Size ~ 6 Mbyte

Throughput best case average worst case

Application 49.5 Mbyte/s 12.5 Mbyte/s 0.25 Mbyte/s

Network 55.5 Mbyte/s 16.4 Mbyte/s 0.25 Mbyte/s

Figure 11: Individual Stages and Performance of a COVISE remote Data Request

174 CUG 1995 Fall Proceedings

[5] Haas, P.: “Classical Host Interfaces and Network Architectures Aiming at
the Gigabit”, Networld+Interop 94, Berlin, Germany, June 8–10, 1994.

[6] Haas, P.: “Optimal UDP Buffering for Unicos 8.0 NFS”, Cray User Group
(CUG) 1994 Fall Proceedings, pp. 197–204, Tours, France, October 10–
14, 1994.

[7] Haas, P.: “High Speed Networking at RUS”, International Conference on
High Performance Computing and Networking, Milan, Italy, May 2–5,
1995.

[8] Renwick, J., Nicholson, A.: “IP and ARP over HIPPI”, RFC 1374, Cray
Research, Inc., October 1992.

[9] Optivision: “8x8 Optical Crossbar”, Optivision, Palo Alto, CA.

[10] Hall, E., et al.: “The Rainbow-II Gigabit Optical Network”, IBM T.J. Wat-
son Research Center, Hawthorne, NY.

[11] Stuart, D.: “The Influence of ATM on Data Serving for High Performance
Computing”, Maximum Strategy, Inc., Milpitas, CA, 1995.

[12] Rantzau, D. et al.: “Collaborative and Interactive Visualization in a Distrib-
uted High Performance Software Environment”, Proceedings HPCGV, pp.
194–203, High Performance Virtual Environments V, Swansea, UK, July
3–4, 1995.

[13] Wierse, A.: “Performance of the COVISE visualization system under dif-
ferent conditions”, Proceedings SPIE 2410, pp. 218–229, Visual Data Ex-
ploration and Analysis II, Grinstein and Erbacher, Ed., 1995.

