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ABSTRACT: 

 

The UNICOS Fair Share Scheduler is a departure from the conventional
UNICOS per-process scheduler in that it distributes computational resources to users or
accounts rather than directly to processes.  With its hierarchical implementation, it provides the
ability to accommodate political goals at multiple levels of organization.  This hierarchy, or
share tree, adds greater functionality but increases complexity.  The complexity introduced by
the hierarchy often makes it difficult to understand and predict how Fair Share will behave
under a variety of conditions.  Analyzing the Fair Share Scheduler as a feedback control system
provides some visual insight as to how it should behave and some possible causes for unexpected
behavior.

 

1 Introduction

 

The Naval Oceanographic Office (NAVOCEANO) Depart-
ment of Defense (DoD) Major Shared Resource Center (MSRC)
was established under the DoD High-Performance Computing
Modernization Plan (HPCMP) in October 1994 as the second
such facility of its kind.  The MSRC was created from the
computational assets previously dedicated to NAVOCEANO to
support the Primary Oceanographic Prediction System (POPS).
With the designation of the former NAVOCEANO POPS
facility as a DoD MSRC, the facility became available to all
DoD Research and Development activities requiring high-
performance computing (HPC) resources.  Located at Stennis
Space Center, Mississippi, the existing assets were augmented
with a Cray C916/16-1024 system to support the increased
workload resulting from the expansion of the user community
that came about with the designation as a DoD-wide resource.
The UNICOS Fair Share Scheduler, already in use at the other
existing DoD MSRC, was utilized from the beginning as a
means of accomplishing the allocations of CPU time between
the multiple DoD R&D groups who would use the systems.

User concerns about accounting report discrepancies versus
fair share entitlements on the NAVOCEANO DoD Major
Shared Resource C916/16-1024 system led to a detailed inves-
tigation to determine the reasons and the remedy for them.
Specifically, when the monthly accounting reports were exam-
ined, the users noticed that significant differences existed
between the actual utilization and the expected utilization for
various groups considering what was understood about Fair

Share Scheduler behavior. The investigation was wide ranging
and uncovered numerous significant issues which govern
system throughput and explain the differences seen between the
accounting reports and the entitlement definitions.  As will be
shown in this paper, some of these issues can be attributed to a
disparity between how a Fair Share Scheduler should intuitively
function and how it actually performs. Other issues deal with the
expectation that a CPU scheduler will be able to closely match
a target allocation scheme across all levels of allocation granu-
larity when it has limited ability to consider and affect alloca-
tions of other system resources.

 

1.1 Problem Statement

 

The problem posed was to develop an understanding of why
these discrepancies existed when Fair Share Scheduler was
being employed to prevent them.  Users were demanding to
know why they weren’t “getting their fair share.”  

The intuitive behavior of a Fair Share Scheduler operating
with a hierarchical allocation scheme (multiple levels of subdi-
vision of CPU time) is that it will act to limit overconsumers and
boost underconsumers so that all levels of the allocation receive
exactly the entitlement of CPU time defined.  The expectation is
that no one group which has sufficient workload will receive
less than the allocation defined for them.  This applies to all
groups in the hierarchy, no matter what level.  Thus, the sum of
CPU time accumulated for all subgroups of a given group will
be no less than the amount of CPU time allocated to that group.
This produces a corollary expectation that surplus CPU time
from subgroups with insufficient workload will be reallocated
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proportionally among the subgroups with sufficient workload.
Surplus time is produced when a subgroup’s actual usage is less
than its entitlement.  The Fair Share Scheduler is expected to
force the usage levels for all groups to converge on the defined
allocations within a given accounting interval (temporal
behavior).  Thus, correct allocation and functionality is
measured by system resource accounting reports that describe
actual CPU usage.  However, the Fair Share Scheduler actually
behaves in an instantaneous fashion, and while convergence is
often observed, it is seldom monotonic and complete.

 

1.2 Reasons for Using the Fair Share Scheduler

 

The DoD HPCMP has been created to modernize the total
high-performance computational capability of the military
research, development, test, and evaluation (RDT&E) commu-
nity to levels comparable to that available in the foremost
civilian and other Government agencies, such as the National
Science Foundation (NSF) sites. Economic necessities of the
post-Cold War environment have reduced total available
resources for DDR&E activities and resulted in the establish-
ment of high-performance computational facilities shared by the
entire DoD RDT&E have community.  This consolidation of
resources generates a diverse widely geographically dispersed
user community which has previously utilized local resources
typically dedicated to a single branch or organization within a
single branch of the DoD [5].  Specifically, the user community
created presents a wide range of computational requirements to
each computational platform.  With funding for the shared facil-
ities originating from the parent DoD organization, a means of
equitable distribution of the computational resources among the
entire DoD RDT&E community is required.

NAVOCEANO has a continuing requirement to provide
near-real-time support with the POPS oceanographic products
delivered on a daily schedule to operational Navy fleet units
deployed world-wide.  This necessitates that a portion (up to
15%) of the computational resources remain available for
NAVOCEANO’s internal use in generating the products, reme-
dial support of the models, and continuing development efforts
to support future requirements.  Thus NAVOCEANO requires a
separate entitlement, and within that entitlement, two priority
levels of workload exist, each with their own separate entitle-
ments reflecting their relative importance: the oceanographic
products that must be produced within specific time windows
and the remedial and future requirement support.

 

1.3 NAVOCEANO MSRC Share Tree and FSS Parameters

 

Two models of the fair share scheduler exist: a flat, or
single-level model and a hierarchical model.  The flat model
divides the system allocations one time.  The hierarchical model
allows for the situation where independent organizations share a
system and that the user shares of the system depend on the allo-
cation of  their organization’s entitlement and their entitlement
within their organization [6].  While more complex, this model
is preferred for most environments.  It provides an easy means to
allocate shares as each organization is free to allocate its shares

as if it had exclusive use of the system.   This multiple indepen-
dent organization scheme is inherent in the NAVOCEANO DoD
MSRC resource allocation scheme and the HPCMP directions in
general.

The NAVOCEANO DoD MSRC configuration of Fair Share
Scheduler uses the Share by Account and the Adjust Groups
features of UNICOS Fair Share Scheduler.

The Adjust Groups feature is designed to redistribute the
resources unused by groups to other groups with the same
parent.  This is to prevent system resources from going unused
when not all groups are active.  There are significant implica-
tions of this feature which are explored in depth in Section 2.0,
Investigation of the Fair Share Scheduler.

Share by Account calculates usage and adjusts priorities for
each active account ID (acid).  The NAVOCEANO MSRC user
environment supports individual users working on multiple
projects, with separate accounting for each project
(Project-Level Accounting).   Users supporting multiple projects
typically employ a single userid and switch between projects
using the 

 

newacct(1)

 

 command.  This allows them to work
under a different set of fair-share priorities for each project and
assures that CPU utilization accrued under one project is not
applied to the user’s other, independent projects.   Implementa-
tion of Share By Account is effected by creating shareholder
nodes (the terminal nodes in the resource group tree)  for each
project and assigning share allocations to them.  Userids are
assigned a default and permitted list of acids in their User Data
Base (UDB) entry which correspond to the shareholder nodes
[3].  In all other respects, Fair Share Scheduler works as if it were
accumulating usage for userids.

The requirements from Section 1.2 are combined to produce
the basic Resource Group Tree illustrated in Figure 1-1,
NAVOCEANO DoD MSRC Fair Share Scheduler Hierarchy.
The shareholders (project IDs) are connected to the lowest level
resource group in the share hierarchy; and for the majority of the
cases, are all assigned equal shares.   In the NAVOCEANO DoD
MSRC configuration, this is typically a department or a lab of a
DoD Service Branch. These lowest levels of resource groups are
then connected to their parent organization and are assigned
shares to effect the suballocation of the parent organization’s
entitlement.  This process continues in turn at each successively
higher level of organization until the parent DoD Service (Army,
Navy R&D, Air Force, etc.) is reached.  The parent organization
for the Service Branches has a single sibling in the resource
group tree, NAVOCEANO.  These two groups have the User
resource group as their parent node and are assigned shares to
implement the allocation of 15% of the system resources to
NAVOCEANO. The “System” and “Staff” resource groups are
overallocated with 12.5% each.  Neither of these groups are
expected to require CPU resources of this magnitude; however,
these levels provide for ample “reserve” in the event that a high
priority system process or support function is required.  Actual
combined utilization for these resource groups is typically under
5% combined.  By defining 12.5% for each group, Fair Share
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Scheduler will see them as underutilized and boost the priority
of their processes.  The same methodology is used to insure that
the POPS Oceanographic Products are run within the requisite
daily real-time windows.

 

1.4 System Utilization Inconsistencies Encountered

 

Users noticed that the system failed to equitably divide
“surplus shares” between two equally entitled major groups.
Specifically, attention was focused on the system share realized
between the Army, Navy R&D, and Air Force Groups. Refer-
ence Figure 1-1, NAVO DoD MSRC Fair Share Scheduler Hier-
archy, for the resource groups and their relationships.  Both
“Army” and “DoD Other” were light users of the system during
the period in question, undersaturating their node.  With insuffi-
cient workload from both groups to utilize their full entitlements,
and the FSS ADJGROUPS feature in effect, the amount of
“Army” and “DoD Other” entitlements not used (surplus entitle-
ment) should have been distributed equally between the Navy
R&D and Air Force resource groups. Both “Navy R&D” and
“Air Force” oversaturated their nodes and thus, both should have
had roughly the same utilization for the report period in ques-
tion.

In fact, what actually occurred is presented in Table 1-1, May
1995 NAVOCEANO DoD MSRC C916 Utilization.

Air Force users received 46.78% of the total CPU time in
28646 runs; while Navy R&D users received 35.12% of the total
CPU time in 22920 runs.  Both groups executed predominately
batch runs equally across the batch queue structure.  If FSS was

performing as required, both groups should have received equal
amounts of the system.  Table 1-2, Observed Utilization Anom-
alies illustrates the unexpected results.

The surpluses from each level were applied among active
siblings and propagated down into the tree to determine the
actual surplus available for each lower level resource group.
This was done in turn for each level to arrive at the actual surplus
available for the lack of activity on all other nodes at the same
and higher levels.  When this was done, the resulting target real
entitlement for “Navy R&D” and “Air Force” for this
accounting interval was 40.952%.  Thus, “Air Force” received
5.83% above their target entitlement and “Navy R&D” received
5.83% below their target entitlement.  Clearly something was
operating beneath the surface of FSS which required further
investigation.

Table 1-1. May 1995 NAVOCEANO DoD MSRC C916 Utilization

Resource
 Group

CPU
Hours %

No.
Jobs

No.
Users

Army 442.4701 4.19 685 29

Navy R&D 3705.8881 35.12 22920 345

Air Force 4935.7895 46.78 28646 177

DoD Other 88.9370 0.84 528 13

NAVO 1158.1426 10.98 116954 121

Support 219.8616 2.08 42897 45

System
12.5%

Idle
0.0%

User
75.0%

Staff
12.5%

Root
100%

NAVOCEANO
15.0%

DoD R&D
85.0%

NAVO1
20.0%

NAVO2
5.0%

Internal
75.0%

Army
30.0%

Air Force
30.0%

Navy R&D
30.0%

DoD Other
10.0%

Shareholder Nodes Department Groups

Shareholder Nodes

 

Figure 1-1: NAVOCEANO DoD MSRC Fair Share Scheduler.
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1.5 Attempts to Resolve Inconsistencies Using FSS
Parameters

 

Observations revealed an active user under the Air Force
resource group whose jobs, running in a favored queue, were
executing with a base 

 

nice

 

 value significantly lower than that of
other users.  This user’s UDB nice[b] value was set to 0, whereas
the normal setting is 8.  This allowed this user’s batch jobs to
execute with a base nice value eight points below all other users
in the system.  Analysis of the process accounting records
showed that this user accounted for the majority of the 5% differ-
ence noted.  When these nice values were corrected, a
week-by-week spot check of utilization by the DoD Service
branches and the subsequent month’s accounting reports showed
greater convergence.  However, this raised further questions
about the internals of FSS and called into question its validity.
The question posed was that even if this user’s nice value gave
him a higher execution priority, why did FSS not still limit his
activity so that the Air Force resource group used only its target
entitlement?  

Moreover, monitoring of the system activity showed a peri-
odicity in the decayed usage for resource groups which closely
followed an approximately 24- hour interval.  Since activity was
relatively constant for these resource groups, decayed usage
should also remain fairly constant.  Decay seemed to occur
normally for groups which had no activity for a period of time,
but the 24-hour variability occurred for the consistently oversat-
urated nodes.

The usage decay half-life during that accounting interval was
8 hours.  With three half-lives in a day, usage was decaying too
rapidly. This appeared to be involved in the discrepancies.  

A full analysis of Fair Share Scheduler was then undertaken
to learn the exact nature of the underlying mechanisms.  Partic-
ular attention was paid to determining reasons why the work-
load, controlled by Fair Share Scheduler, would fail to achieve
reasonable convergence to the target utilization as defined by the
entitlements in the share group hierarchy.  Once it was ascer-
tained that the Fair Share Scheduler code was at the latest Bugfix
levels during the report interval in question, analysis concen-
trated on the underlying algorithms.

Table 1-2. Observed Utilization Anomalies

Resource
Group

System Share
Entitlement

Actual
Utilization

Surplus
(Deficit)

Army 19.125 4.19 14.935

Navy R&D 19.125 35.12 (-15.995)

Air Force 19.125 46.78 (-27.655)

DoD Other 6.375 0.84 5.535

NAVO 11.250 10.98 0.27

Support 25.000 2.08 22.92

 

The usage decay half-life was extended in a series of steps to
168 hours (1 week) to coincide more with the accounting
interval of one month.  Further, this extension was called for in
light of the initial results of the analysis of Fair Share Scheduler
presented in Section 2.0, Investigation of the Fair Share Sched-
uler.  

Node saturation was also an issue.  The NAVOCEANO
resource group was failing to reach its full entitlement, in spite
of a backlog demand which would easily exceed it.  Analysis
revealed that these jobs were being caught in backlog and the
throughput was simply not high enough to experience node satu-
ration.  The problem was more complex and eventually resulted
in several URM and general tuning changes.  Specifically, the
URM ranking algorithm was changed to consider the Fair Share
usage information provided to URM (rmgr: /urm/usage_wt) as
the most significant factor in ranking jobs for execution.  Previ-
ously, the age of the job in the input queue (rmgr: /urm/age_wt)
was considered the most important [3].  With throughput
increased and usage history information considered, more
NAVOCEANO jobs were able to be gated into execution  The
probability of a job entering execution during a specific time
interval is inversely proportional to the memory requirements
for the job.  NAVOCEANO jobs fell into a region outside
URM’s preferred job size.

During the analysis of the implementation and the require-
ments of the product, our site developed a model of our own
about what a FSS should do.  Thus, a model began to emerge
which strongly suggested a structure best described using
control theory.  The requirement for the product resembled a
feedback-controlled pulse frequency modulator which evolved
into the model presented in this paper.  As will be shown, such a
model is very applicable in describing a new implementation.
The format of this model, when used to analyze the existing
implementation, very quickly exposed the algorithmic deficien-
cies as well as the modifications required to remedy them.

When control theory is applied to the existing implementa-
tion and the original flat model is considered, it strongly
suggests that the FSS product is actually an empirical extension
to the flat model.  This is suggested by the existence of the adjust
groups flag (shradmin  ADJGROUPS) in the UNICOS FSS.
With ADJGROUPS disabled, the implementation collapses to
the flat model.  The ADJGROUPS functionality is implicit in a
hierarchical model. This becomes the main reason why FSS fails
to perform as required in a complex hierarchical environment.
An empirical extension typically does not consider nor antici-
pate all potential situations under which it is required to perform.
FSS is a control mechanism for an extremely complex system
and thus the most appropriate means for designing such a control
system is by the use of formal control theory.  Formal control
theory contains the elements necessary to state and design
complex control mechanisms succinctly for complex systems.
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2 Investigation of the Fair Share Scheduler

 

The UNICOS Fair Share Scheduler operates on the paradigm
of share allocation. Each user is given CPU entitlement based on
share holdings.  Functionally, the user's shares are divided by the
system total to define normalized share or system percentage [8].
This normalized share is the magic number that the user will be
looking for in accounting reports. The share administrator must
define other parameters commensurate to user work load period-
icity.

 

2.1 The Simple (Flat) Fair Share Scheduler

 

The original implementations of Fair Share Schedulers
assigned shares to users only.  This was a great improvement
over no share at all in that users with a single process would not
be starved by users with multiple processes, and sporadic users
would receive high priority during loaded conditions. Likewise,
users with more shares received consistently better response.

 

2.1.1 Modification to the Priority Equation

 

Due to history or ease of implementation, the standard
decaying priority-based CPU scheduler is used as the foundation
for FSS and the model from which all subsequent equations are
derived. This model is simply a queue of runnable processes
ordered by priority. The algorithm for scheduling is as follows:

 

Note:

 

 pri is the number that defines priority where high
priority implies low pri and low priority implies high pri. 

a) Select process with lowest pri (highest priority) and execute
for one OS cycle

b) Increase pri (decrease priority) for that process

c) decay pri (increment priority) for all waiting runnable pro-
cesses

d) goto a

This mechanism is analogous to a conveyer belt with a CPU
at the front. The front process is grabbed by the CPU and oper-
ated on (a), then placed at the back of the conveyer (b), while the
conveyer moves steadily forward (c).

This old "process fair" CPU scheduler becomes a "user fair"
scheduler with a very simple modification to the priority degra-
dation equation (b). The equation must insert the user's
process(es) into the queue in such a way that the CPU time spent
on that user's work is equal to the user's normalized share. That
is, rather than appending a process to the end of the conveyer
belt, it is placed closer to the front of the belt as a function of
normalized share. This new priority equation is

(1)

where number_procs is the number of processes owned by that
user that are currently in the run queue.

The computational overhead of performing an exponential
operation at every scheduling event may be impractical, but it is
required due to the exponential decay mechanism of the sched-
uler (conveyer).  Over an implicit time interval (defined by OS
hertz and the length of the run queue - usually a few seconds),
this equation (1) will fairly distribute cpu to runnable processes,
but aside from being expensive, it does not address the need for
fairness over hours or days. This equation can work only with
what is currently in the run queue, without regard for users that
aren't running at least one process constantly.

 

2.1.2 Decayed Usage for Memory (Temporal Feedback)

 

Because workloads usually have a certain chaotic periodicity,
instantaneous fair share is not really the desired goal.  In order to
accommodate the desire to have system accounting reports
resemble share allocations, the FSS must remember past usage.
As usage accumulates, the ratio of usage to share should be the
same for each user. A factor of usage/share in the priority equa-
tion will degrade the priority (increase pri) for users receiving
more than their share and increase priority (decrease pri) for
users receiving less than their share.

The distinction of a feedback control system is that it doesn't
require an exact equation - it is self-correcting.  We eliminate the
need for an exponential function to define priority, because if we
are not exact in our approximation, usage/share will adjust itself
to compensate [7].  We can therefore state the fair share priority
equation as

 

(2)

 

which is computationally much simpler than an exponential, and
it is fair over time.  A decay factor is placed on the usage term in
order to limit the obligation to be fair over an infinite interval.
For example, suppose share was implemented on a system
without decay of usage, and users A and B were each entitled to
50% of the machine. Further suppose that A had daily require-
ments for system utilization and B had no requirements at all.
Six months later, however, B had a project that called for heavy
utilization. Without decayed usage, group B will dominate (well
over their 50%) for several months in order to compensate for
their previous lack of usage, and group A will be unable to meet
their daily computational requirements. Providing a decay
half-life for usage allows the share administrator to define an
effective interval in which machine share must be asked for or
lost.  This decay also bounds the decayed usage parameter,
which is convenient for limited precision machines.

At this point, the primary concern of the FSS is effectively
adjusting process priority so that cpu scheduling is fair.  With all
the complex internals of FSS, the only real transient input and

( )( ) ( )( )pri pri
1 normalized_ share user *number_procs user= + −

e

( ) ( )( )
( )( )

pri pri usage user share user

       num_procs user share(user)

= +

×

 

Figure 2-1: Usage Decay.
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output are charges and pri, respectively.  In order to build a
representative block diagram model of the FSS feedback control
system, we need to simplify some of the operations into func-
tional groupings.  The first candidate for grouping is the usage
decay block to implement the integral equation for decay (6). 

When discussing decay factors, we have several different
variables (

 

σ

 

, half-life, K), so to avoid confusion, we will expose
their relationship here.  Generally, usage decay is specified in
half-life, but is only used to define internal variables s and K.
The fundamental decay equation is simply

(3)

Initially, we specify the decay in terms of half-life, which
gives us 

 

σ

 

, by

 

(4)

 

where t_half is typically specified in hours.  Now, we can deter-
mine an appropriate decay factor for any time interval by

 

(5)

 

which is especially useful since the FSS delta, 

 

∆

 

, (shradmin -R)
is a constant.  Since this number is generally specified in
seconds, we can define K as:

 

(6)

 

K is then the number (very slightly less than 1.0) displayed as
DecayUsage with the 

 

shconsts

 

 option for shrview(1).  Since
usage is simply the integral of charges over time, it can be
written as:

 

(7)

 

and decayed usage, then, as

 

(8)

 

Having come up with a means for calculating decayed usage
and defining a control block that provides that functionality, we
can now show a block diagram for the flat FSS.  Note that the
FSS only sets priority and receives charges. The conventional
CPU scheduler is still the workhorse.

 

2.2 The Hierarchical Fair Share Scheduler 

 

The original desire for a Fair Share Scheduler was to provide
a mechanism fair to users, not processes; having achieved that,
the next requirement is obviously fairness to groups of users, and
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groups of groups.  Stated simply, the new goal is hierarchical
FSS.

The flat FSS is essentially a very simple implementation in
that each node is functionally independent.  Figure 2-1, Flat Fair
Share Scheduler Model, shows that there is no need for commu-
nication between nodes.  This is essential, however, for hierar-
chical share for satisfying the requirement of fairness to groups.
For example, consider organizations A and B that each have
equal entitlements, and each of the users within the organization
have equal entitlements.  If two users of organization A are
active, and one user from organization B is active, without
compensation, organization A will receive 2/3 share, and orga-
nization B will receive 1/3 share.  In order for organization B to
receive its entitlement, an adjustment must be made to alter the
priority of the organization B user.  In order to sense this error in
proportion, nodes must be maintained at the organizational level
and fed by the charges incurred by its children.

 

2.2.1 Current FSS Approach 

 

The hierarchical implementation to FSS is much more
complicated that its flat predecessor.  Part of this complexity is
intrinsic to the goal, but some may be unnecessary.  Essentially,
the flat portion of the algorithm is unchanged, but the method of
defining shares is specified in hierarchical terms. For example,
suppose that there are two organizations, A and B, and each hold
200 shares. Their effective machine share is 50%. Suppose also
that organization A has two users, and each holds 150 shares.
Their effective group shares are 50%, and their effective
machine shares are 25%.

This mechanism can be used to collapse any tree hierarchy
into a flat share.  In fact, without the ADJGROUPS flag set,  that
is exactly how share operates.  In practice, it makes little sense
to define a share tree without telling share to use it, so
ADJGROUPS is usually set. 

 

2.2.1.1 Adjusting Groups Complex

 

The adjust groups algorithm is a separate module within the
FSS.  Its function is to define a weighting parameter for each
terminal node that is used to calculate the Pri parameter.  The
caveats of the hierarchical implementation reside almost exclu-
sively in this adjust groups algorithm, and its method of
providing fairness. 

Figure 2-2: Flat Fair Share Scheduler Model.
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The method of adjusting groups takes a fundamental step
away from the proven paradigm of decayed usage, by deter-
mining  fairness among groups with short-term (scheduler delta)
charges [6].  As was stated in the discussion of the flat FSS,
instantaneous FSS, while instantaneously accurate, does nothing
to satisfy the long-term requirements for fairness.  The analogies
are not direct from flat to hierarchical, but the result is the same.
It requires more algorithmic and hence computational overhead
to produce this instantaneous fairness to groups than a temporal
FSS.

In terms of predictability, having components of the sched-
uler that are transient (group adjustment) and  temporal (flat
component) tend to produce unanticipated results.  The transient
element allows the chaotic periodicity associated with the user
loads to become part of its output rather than forcing a
smoothing function.

 

2.2.1.2 Limitations of the current approach

 

There are many limitations to the FSS that are imposed by the
environment in which it operates; regardless of implementation
limitations, they will still cause the data to be skewed.  These
concerns are elaborated on later,  but part of the problem in
determining algorithmic limitations is attempting to filter out the
environmental factors.  

From a strictly algorithmic analysis, there are scenarios that
raise questions not answered by the current implementation.
Consider the share hierarchy shown in Figure 2-3.  There are two
organizations named A and B: A has users 1 and 2; B has users
3 and 4. All entitlements are divided equally.  With
ADJGROUPS in operation, suppose 4 runs for a sustained
period.  Later, 1 and 2 log in and begin running. Since their
usages are low, they become the dominant jobs on the system.
Suppose, then 4's process terminates and 3 logs in and begins
running. How does 3's process perform?  Since group A has still
not received its fair share because of 4's long-running process,
we might expect that 3 will run poorly.  This would be fair to A,
but unfair to 3. As organizational utilization constitutes a larger
workload than per user utilization, it makes sense to adjust the
organizational discrepancy of A and B first, then deal with the
discrepancy between 3 and 4.  In reality, the fairness between
groups is governed by transient analysis, so 3's process becomes
dominant.  This is unfair to A.

  root

  Organization A   Organization B

 1  2  3  4

50%50%

25% 25% 25% 25%

Figure 2-3
Share Tree Example

Figure 2-3: Share tree example

 

Under consistent loading conditions by all users and a very
long usage decay half-life, this problem becomes less apparent,
but it still induces a bound on the accuracy of the FSS.  For that
reason, small share allocations and deep share trees are not
recommended.

 

2.2.2 Fully Hierarchical Feedback Approach

 

In analyzing the flat FSS model it can be seen that there is no
need for node communication.  Unfortunately, this is not the
case for the extension to a hierarchical FSS.  The flat fair share
scheduler has need for only one datum:  the current usage.  The
data needs are greater with a hierarchical scheduler.  Before,
priority was adjusted directly because the only concern was for
a particular node to receive its fair share.  Now we must consider
a node as a component of a larger resource group.  The share
mechanism must work to realize its entitlement among its
siblings, but only within the limits of the parent’s entitlements.
In the flat case, the share mechanism could be run directly from
usage, because the parent node was the root node and the chil-
dren could get no more than the machine’s capability.  For the
hierarchical FSS to work in any sort of intuitive way, parent
nodes must be able to place a limit on group consumption.   This
need is not addressed in the flat FSS because the only parent
node is the root node and it already has an intrinsic limitation.
For this reason, using the existing flat FSS algorithms is impos-
sible, and a new technique must be devised.

There are really only two fundamental concerns when exam-
ining any branch point of a hierarchical FSS.  First, the node
must receive its entitlement.  Second, the node must fairly
distribute its resources.  For this reason the duties of our
proposed hierarchical FSS are broken into two administrative
tasks.  One duty is for the share node to act as the advocate for
its offspring, the other is for the share redistribution node to act
as the arbitrator to its offspring.  The first functional block (the
share node) determines whether the entitlements for its group are
being realized and adjusts itself to do so.  The second block (the
share redistribution block) periodically redefines entitlement
based on decayed usage.  This structure allows for fairness to the
group via the share node as well as fairness among the group
members via the share redistribution node.

 

2.2.2.1 The Share Node

 

The share node shown in Figure 2-4 is the fundamental feed-
back control system in this structure.  Its primary inputs are
base_share, which is the parent’s share, and transient_share
which is the node’s current share relative to its siblings.  The
product of these two numbers defines the actual share for that
node.  The feedback input for the share node is simply the
charges accrued by that node over the last scheduler delta.  The
output uses all of these data to generate a base_share for its chil-
dren.  Internally the share node has two major components: a low
pass filter block, and an error block.

The low pass filter  shown in Figure 2-5 is used to filter out
high frequency noise in the charges value to stabilize the input
to the error block.  The low pass filter has one parameter, K

 

c

 

,
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with range (0.0, 1.0], which defines its transient response. A K

 

c

 

of 1.0 is a unity (all-pass) filter, while values close to 0.0 pass
only low frequency variations. The electrical system analogy is
that of an RC network where 

 

charges

 

 represents the voltage
source, K

 

c

 

 represents the resistance (R), and the output is the
voltage across the capacitor (C).  This filter allows the scheduler
to adapt to abrupt changes in user workload without burdening it
with unstable input.

We then apply the smoothed charges function to the error
block shown in Figure 2-6.  The other input to the error block is
the desired share.  The difference between these two numbers is
multiplied by another scaling factor, K

 

µ

 

, which defines the speed
with which priority adjustments are made.  This output, defined
as the 

 

error

 

, is then subtracted from the node’s actual share to
define the base_share of its children.

The only configurable parameters of the share node (aside
from share tree defined entitlements) are the two constants, K

 

c

 

and K

 

µ

 

.  K

 

c

 

 should be set to define the length of time considered
when determining error of entitlements versus realized utiliza-
tion.  This window should probably be on the order of one to five
minutes.  This value can be the same for all share nodes.  A little
more care must be taken when defining the parameter K

 

µ

 

.  Real-
istically the operating range for this parameter should be [0.0,
2.0], where values close to 0.0 produce an overdamped conver-
gence to the appropriate share (0.0 produces no error correction
at all), and larger values produce varying degrees of overshoot,
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but faster convergence.  The setting of this parameter must also
consider the depth of the node within the share tree.  The parent
nodes must give their children a little time to correct to their
adjustments before they take action themselves, so K

 

µ

 

 should

increase proportional to node depth.

 

2.2.2.2 Share Redistribution Node

 

The share redistribution node provides the dynamic distribu-
tion of share among siblings based on their decayed usage and
their entitlement.  We define a functional block, shown in Figure
2-7, for providing this utility, but for simplicity’s sake we define
its function mathematically and graphically. 

The mathematics used to redistribute shares are really just a
position control system in n-dimensional space.  We will
consider the situation where n = 2 (that is, a parent node with two
children) for diagramming purposes, but the idea applies for any n.

First, we consider our two-dimensional space of Figure 2-8.
Each child node, A and B, has an axis orthogonal to its sibling
(the x and y axes in this case), and the coordinates of the current
“position” are defined by the decayed usage of each child
(decayed usage(A), decayed usage(B)).  There is also a target
line defined by

x/entitlement(A) = y/entitlement(B). (9)

If the resources of this node are being fairly divided among
the children, the current position will be on this line.  If they are
not, then we need to define a new vector (share distribution) that
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will lead us to fair distribution over time.  The equation to satisfy
this need is

(10)

where 

 

tshare

 

 is the transient share vector, n is the scaling factor
that defines the point on the fair share line that is targeted,  and
max(

 

u

 

) is the largest component of the decayed usage vector. 

 

S

 

is the entitlement vector and 

 

u

 

 is the decayed usage vector
(generated by the 

 

charges

 

 vector sent through n decay blocks).

 

Tshare

 

 is then normalized to define a share percentage for each
child. 

The parameter n is of importance in that it will allow the over-
consumer a small portion of the parent’s share.  This keeps from
marooning overconsumers. 

The share redistribution process is not a very expensive oper-
ation, but it need not be performed at every scheduler delta
either.  For example if you have a usage decay half life of seven
days, you may only want to redistribute shares every five
minutes or so.  That provides over 2000 redistributions within a
half-life, which is intuitively sufficent for good convergence.

 

2.2.2.3 Node Hierarchy Configuration

 

Given the two fundamental functional blocks share node and
share redistribution node we can now define how the hierar-

( )[ ]tshare u u= × × −s maxν

Figure 2-8: Share Redistribution Behavior.
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chical FSS tree is constructed.  The general configuration is for
a share node/ redistribution node pair to be embedded within the
tree.  These nodes are connected in the fashion shown in Figure
2-9.

There are also two special cases for node configuration.  One
case is for children of the root node, and the other is for terminal
nodes.  For children of the root node, the share redistribution
node still exists, but the need for an “advocate” share node is no
longer necessary.  The diagram for the root node configuration
is shown in Figure 2-10. The base_share parameter for children
of the root node is always 1.

Finally, there is the terminal node configuration shown in
Figure 2-11.  It is just the opposite of the root node configuration
in that the terminal nodes still require an “advocate”  but not a
share redistribution.  The share node terminator, illustrated in
Figure 2-12,  is fed by the base_share of the terminal node to
convert the share information into a CPU scheduler Pri (pri
increment).  

In this case, a value of nprocs/share

 

2

 

 is used because it
provides a closer approximation to the exponential properties of
the decaying pri scheduler.  Since the feedback control of the
terminal share node will adjust for error, the square is not neces-
sary, but it provides faster convergence.

 

2.2.2.4 Administration Issues

 

In order to have a properly functioning hierarchical FSS of
the type proposed here, there are several key parameters that
must be set appropriately.  The low-pass filter parameter, K

 

c

 

,
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must be set to a window of time that is suitable for error-block
input.  The error-block input must also have appropriate K

 

µ

 

values that are commensurate with desire for fast convergence as
well as an increase in the parameter based on node depth to
guard against thrashing.

The concept of a single usage decay half-life also disappears
with the hierarchical implementation.  The scheduler gives pref-
erence to parents over children when it encounters discrepancies
in realized utilization versus entitlement, so some mechanism
must exist to provide fairness to both.  The example discussed in
2.2.1.2 and illustrated by Figure 2-3 clarifies this issue.  Given
the same scenario as this example, we can step through the
mechanism of the proposed hierarchical FSS and see how it
responds.  First, 4 runs as the lone process for an extended
period.  Each time the share redistribution runs, organization A
receives a greater share to compensate for its lack of utilization,
and within organization B, 3 receives a greater share.   Since 4 is
still the only active user, it still receives all the processing time.
Later, when 1 and 2 from organization A log in and begin to run,
their organization’s share is much greater than organization B’s
due to share redistribution, so their processes enjoy the majority
of the processing time regardless of what is running under orga-
nization B.  For the purpose of discussion, assume that 4
continues to run and 3 logs in and begins processing.  It is now
clear that 3’s performance will be poor relative to its entitlement,
but good relative to 4.  Assume 3 continues to run.  All nodes are
now active and 3 is the only one that is not realizing its entitle-
ment.  Eventually the usage of organization B will decay and  the
usage for organization A will accrue to the point that their redis-
tributed share will equalize.  3 then will enjoy more processor
time, but the usage for 4 will also have been decaying this whole
time.  So by the time the organizations have corrected them-
selves, 4 will also have done its penance and resume requesting
the majority of its entitlements.  In this scenario 3 was unable to
realize its entitlement.  A solution to this problem would be to
increase the decay half-life for the children 3 and 4.  Then, when
the organizations have adjusted to correct their usage discrepan-
cies, 3 will receive the majority of organization B’s entitlements
until either by decay of 4’s usage or increase of 3’s, the ratio of
their usages equals the ratio of their entitlements.  

 

3 Enhancing Fair Share Predictability

 

With algorithmic improvements in Section 2.2.2, Fully Hier-
archical Feedback Approach, FSS becomes a correct entity in
and of itself.  However,  Fair Share Scheduler can still encounter
situations where the actual utilization as shown in periodic

 1
x

2 nprocs
share Pri

     1
share

2

Figure 2-12
Figure 2-12; Share Node Terminator.

 

accounting reports will miss the target utilization’s for one or
more levels of the share hierarchy. These reasons all stem from
the use of Fair Share Scheduler as the principal means of
throughput management and reveal themselves in the failure to
saturate the share hierarchy nodes.  This section addresses those
issues.

The analysis of Fair Share Scheduler led to a classification of
the issues into three categories:

• Appropriate Utilization (Node Saturation)

• Resource Manager Interoperability

• Tuning Incompatibilities with Fair Share Paradigm

 

3.1 Appropriate Utilization

 

The foremost reason for failure for the realized utilization to
match the expected entitlements closely is lack of node satura-
tion.  Briefly stated, it means that if a user doesn’t run any jobs,
he doesn’t accumulate usage.  However, it extends beyond the
no job case to include the case where the user does not run
enough work at any one time to drive the CPU utilization of the
system to his entitlement percentage.  Node saturation refers to
the CPU workload executing for a given 

 

lnode

 

.  An lnode is the
data structure which exists in the kernel for a resource group or
shareholder and which contains all information required for FSS
to function.  A saturated lnode is one where sufficient runnable
processes are present in the system to utilize the entitlement
defined for that resource group or shareholder.

Fair Share Scheduler operates only on runnable processes
when there is contention for the CPUs.  Idle time suspends FSS
scheduling, and each scheduler interval with idle time contrib-
utes to the cumulative deviation from the target utilization (enti-
tlement).

 

3.2 Interference with Non-Fair Share- Controlled Resource 
Managers

 

Fair Share Scheduler has limited interaction with other
system resource managers.  This allows other significant
resource constraints to become predominate in determining
throughput.   An improved extension of the Fair Share Scheduler
would exchange information with the other resource managers
on the system.   Alternatively, all resource management could be
gathered together into a single module to provide an integrated
global resource management.

 

3.2.1 Memory Scheduling

 

Processes are not runnable when they are swapped out,
waiting on I/O devices or other resource allocations.  All of these
resources are controlled by managers which do not consider
system usage history when making allocation decisions.
Memory allocation management (swapping) is one of the largest
factors controlling a process’s ability to connect to a CPU.  Swap
decisions are typically based on the size of the memory require-
ment, the residency time in memory or on the swap device, and
the base nice value of the process.  However, there is no mecha-
nism to utilize fair share information when trying to determine if
a process should be swapped in or out.  This can lead to a signif-
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icant discrepancy between a process’s entitlement and its real-
ized utilization.  For example, a large memory process executed
by a user with a large share entitlement (a common occurrence
in many HPC environments) can be swapped out of memory for
considerably longer durations and achieve a lower overall utili-
zation than a small memory process executed by a user with a
lower entitlement.

This requirement for interaction between Fair Share Sched-
uler and the UNICOS memory manager has been previously
recognized as a requisite.  A means of implementing that critical
link was developed for a Fair Share Scheduler implementation
supporting a strictly timed job cycle co-resident with ongoing,
ad hoc development jobs.  This method was deemed successful
and is described in [2].

 

3.2.2 I/O  Scheduling

 

I/O requests to disk, tape, and network devices are typically
scheduled in a FIFO fashion. No means of considering fair share
information exists.  This can give rise to situations where
processes are repeatedly unable to realize their full effective
share.  When considered over a longer time interval, such as an
accounting interval of a week or month, repeated occurrences of
this interference will result in a subnominal realized (actual)
CPU utilization.

Two cases illustrate this phenomenon.  In the first example,
two processes from two different groups having equal entitle-
ments are in execution.  Both perform equivalent levels of I/O
activity.  Process A originates from a user with a high recent
usage history while, Process B originates from a user with a low
recent usage history.  Fair Share Scheduler will lower the effec-
tive share of Process A and raise the effective share of Process
B.  This will allow Process B to gain more CPU time than
Process A so that the two users’ utilization will converge on their
entitlements. However, each process generates roughly the same
number of I/O requests, and each I/O request will have the same
probability of being scheduled during any given time.  Under the
typical case where a process must complete the I/O request
before continuing execution, they both experience the same
amount of I/O wait time. This will interfere with Process B
achieving its effective share, and the impact becomes more
pronounced as the I/O boundedness of these processes increases.
If the Fair Share information was utilized, I/O requests for
Process B could be scheduled ahead of Process A I/O requests
such that they will have a probability of being serviced equiva-
lent to the effective share of Process B.

In the second case, two processes from two different groups
having different entitlements are in execution.  Process A
performs sporadic, light I/O and originates from a user with a
low recent usage history.  Process B performs steady, heavy I/O
and originates from a user with a high recent usage history.  Both
processes operate in the typical case where I/O must be
completed before continuing execution.  In this case, Process
A’s occasional I/O requests will be starved out behind Process
B’s steady stream of requests, and Process A will spend a dispro-
portionate time waiting on I/O.  Fair share has acted to boost

Process A’s effective share to compensate for the low recent
usage history, and yet the runability of Process A suffers behind
the continual stream of I/O generated by Process B.  Using Fair
Share information, Process A’s requests could be scheduled
sooner than most of Process B’s requests so that it can resume
execution and operate closer to the effective share set for it by
Fair Share.

The second case has implications beyond traditional process
executions.  I/O operations result in calls to library routines and
cannot be performed in parallel regions of a multitasked code.
Therefore, the problem becomes compounded by the additional
processes which must wait at a semaphore or barrier before
continuing.  The effect can also be particularly damaging to
performance for applications in a DCE.  Assume that Process A
is an interactive session where Process B is a batch application
performing I/O using DFS.  If both processes must share the
same network at any point, the interactive session response
would be adversely impacted.

It has been argued that this effect is insignificant because the
processes with lowered effective share would use less CPU time
and therefore generate fewer I/O requests.  However, it can be
easily shown that high I/O request rates can be generated by a
very small segment of code requiring a very small amount of
CPU time.  Further, the size of the I/O data transfer has no rela-
tionship to the amount of CPU time required by the process.  It
has also been argued that when a process has a large entitlement,
the usage history decay accrued during the wait interval will
cause FSS to allocate more CPU resources to it when the I/O
completes. The actual interval is not significant in terms of most
practical decay half-lives (milliseconds vs. hours).  It is more
significant that a waiting process is not accumulating usage and
is therefore falling off its effective share.

 

3.2.2.1 Device Allocations

 

Other resource allocations, such as for tape drives, Secondary
Data Segments, and scratch disk space, present wait times to a
process when there is contention for that device.  The wait times
degrade the process’s ability to realize its required effective
share.  System actions such as data migrate and recall actions,

 

ldcache

 

 buffer and system cache management can increase wait
times for a process.  Actions that cause wait times in a way
which does not consider fair share usage information will cause
the actual process execution times to vary from that which FSS
has computed is necessary to meet the target utilization.  In short,
FSS considers CPU time alone, does not consider any of the
reasons why a process may not be able to accumulate usage, and
provides no mechanism for many of these resource managers to
consider CPU usage history when arbitrating contention.

 

3.3 Tuning Inconsistencies

 

Inconsistencies in the tuning of a system can lead to discrep-
ancies between the entitlements and the accounting reports.
These can be either intentional or unintentional.

Intentional inconsistencies arise from tuning goals which
implicitly ignore the share entitlements.  For example, the stated
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goal of minimizing total wait time in the job input queues runs
or establishing an upper bound on the acceptable job expansion
factor [(input queue wait + wall clock run time)/CPU time] run
counter to the fair share paradigm.  By definition, Fair Share
Scheduler is employed to favor certain groups of users over
others.  This places emphasis on jobs submitted by the favored
groups and implies that their jobs should be scheduled more
frequently, even to the point of degrading access to the system
for the unfavored groups.  This will cause jobs from the unfa-
vored groups to languish in the input queue while the system
processes work from the favored groups.  Adjusting the system
to minimize the input queue wait time requires that jobs from the
unfavored groups be occasionally elevated in importance above
that which is appropriate for their FSS entitlement.  Likewise,
the expansion factor would require the same adjustments to the
input queue, compounded by similar priority boosts to the job
once in execution.  The net effect can be to raise the realized
utilization above the entitlement for the unfavored groups at the
expense of realized utilization for the favored groups.  While this
would be acceptable to the groups with lower entitlements, the
groups with higher entitlements will find this objectionable.

Unintentional conflicts are created when inappropriate
parameters on other resource managers contradict share entitle-
ments.  Typically, this would be caused by an incomplete under-
standing of the parameter and its full range of side effects to
other system resource managers in general and Fair Share
Scheduler specifically.  Such cases are most often the result of
the significant complexity to which UNICOS and its product set
has evolved and not through a lack of individual qualifications.

The UNICOS implementation features the ability to utilize
usage history in the Unified Resource Manager [4].  This
provides a means to order jobs from resource groups with low
recent usage relative to their entitlements with higher priority
than other jobs.  This increases the probability that a high-enti-
tlement job will be gated into execution at the expense of
low-entitlement jobs.  This is clearly a desirable feature if
conformance to the entitlements is a high priority.  

Likewise, if tuning goals are expressed as part of the NQS
queues structure and certain categories of jobs are favored, this
will tend to skew the actual utilization for groups whose jobs fit
the categories.  The URM ranking algorithm provides a means,
via the NQS Interqueue Priority, to rank jobs based on the queue
(rmgr: /urm/service_wt).  

It is the user’s responsibility to saturate his or her node with
favored job types.  For  example, the HPCMP seeks to foster
development of multitasking technology.  NAVOCEANO
MSRC is tuned to favor multitasking jobs at the URM/NQS
level.  However, this creates potential for deviation from FSS
entitlements when actual system utilization is reviewed in the
monthly accounting reports.  Several groups exist where the
predominate workload is multitasked, yet these groups have a
small total system entitlement.  This tends to gate more of their
jobs into execution via the preferred multitasking queues as
opposed to groups with higher entitlements that have a predom-

inately unitasked workload and are, therefore, constrained to use
queues which are not preferred.  A solution to this aspect of the
problem is impossible utilizing FSS or FSS enhancements.
Users must saturate their nodes by developing multitasking
codes.  In this case, FSS scheduler provides an implicit method
for realizing the DoD’s goal of developing multitasking software
technology.  Groups who make this investment will be more
likely to realize their allocated entitlement instead of uninten-
tionally surrendering portions of their share to groups with lower
allocations.

 

3.4 Internal FSS Issues

 

As was discussed earlier; there are issues relating to the hier-
archical implementation that make it prone to unpredictability.
Resolving these issues would result in a more predictable
system.

Part of the unpredictability of the FSS is the relationship
between the scheduler delta and the usage decay half-life.  Gran-
ularity of the scheduler is partially a function of the ratio of
scheduler delta to usage decay half-life.  Granularity is reduced
as the ratio is reduced, so decreasing the scheduler delta (which
may be computationally expensive) or increasing the half-life
will provide a higher resolving power.  Another limit is the share
quantum  defined  by the 

 

sharemin

 

 (shradmin -Z) and the group
error quantum

 

 mingshare

 

 (shradmin -Y).
Edge effects are also a product of  very low decayed usage

compared to other users currently executing processes.  For a
short time (depending on the length of the usage decay half-life,
possibly a very long time) a user can dominate the system.

 

4 Conclusion

 

It remains the responsibility of the users to submit sufficient
appropriate workload to the system in order to receive their share
allocation.  The definition of appropriate workloads is the
responsibility of the controlling authority of the system.  It
remains incumbent on the operational management to assure that
the technical decisions and implementations, that is, tuning
parameters and job queues, etc., are established consistent with
this definition.  However, as shown in this paper, there are
significant issues with system-wide implications in the current
implementation of FSS and its interactions with the other
UNICOS resource mangers which degrade the ability to
construct a system environment which conforms to the control-
ling authority’s requirements.
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