

CUG 1995 Fall

 Proceedings

279

Memory, I/O and Multiprocessing Considerations on
ABAQUS and MATLAB

Dong Ju Choi

 and

Mike Ess

, ARSC, Fairbanks, Alaska

ABSTRACT:

In this paper we present results for Abaqus and Matlab jobs running on the
Cray-YMP. Beyond the simple job submission, the user on the Cray YMP has several options
such as defining I/O characteristics and using multiple CPUs. Using ABAQUS(5.4) and
MATLAB(4.1.1) as examples, we evaluate some of these strategies in terms of the trade-offs
between memory, I/O CPU time and wall clock time. We also evaluate how these trade-offs effect
resource accounting.

Introduction

Many users of the Cray YMP at ARSC are not programmers
but “users of packages”. These packages are applications avail-
able to users only as binaries and are treated by the user as
“black boxes”. They perform a function for the user but the
details of how that function is implemented is hidden from the
user. Abaqus for finite element problems and MATLAB for
mathematical problems are two such examples.

Even without access to the source, the users of these pack-
ages have options to effect performance on the YMP. In the case
of Abaqus, the user may alter how I/O is handled. For both
Abaqus and MATLAB, the user may specify how many YMP
CPUs will be used during execution. These decisions have
complicated effects on wall clock times, CPU times and alloca-
tion resources. These decisions are further complicated by the
interaction of the batch environment with the user’s job.

This paper describes some experiments with these two pack-
ages on the ARSC YMP. Variations in performance due to the
batch environment are specifically measured and illustrated.

Abaqus Results

Abaqus is a Finite Element package supplied by Hibbit,
Karlsson & Sorensen, Inc.[1], ARSC has version 5.4. It solves
a wide range of problems in statics, dynamics and heat transfer.
Abaqus coupled with the 1GW of memory on the ARSC YMP
is a unique computational resource. And accordingly, Abaqus is
one of the most popular application at ARSC, both in number of
users and in total CPU time consumed.

By default, Abaqus is a multitasked program, meaning that
it was compiled with -Zp or is linked with library routines that
are multitasked. In this situation, the value of the user’s environ-
mental parameter NCPUS determines whether multiple CPUs
are used or not. Usually the NCPU environmental parameter is
set in the abaqus script that users define when they submit an

Abaqus job. The sample scripts, provided by the suppliers of
Abaqus, have the NCPUS environmental parameter set to 1 but
it is easily changed. The ARSC YMP is a heavily loaded
machine and we are concerned about the overhead of multi-
tasked jobs on the throughput of the YMP. This was the moti-
vation for experimenting with Abaqus.

We began with a benchmark problem provided by Hibbit,
Karlsson and Sorensen, Inc[2]. From that document we have the
following description: “This is an eigenvalue analysis
consisting of shell elements of the type S8R. The problem does
nine back-substitutions for nine iterations to extract 15 eigen-
vectors”. This problem has a very large I/O component because
of the multiple back-substitutions. In particular the I/O wait
time is approximately equal to the CPU time.

Using the CRI tool procstat, it was easy to narrow in on the
file that accounted for most of the I/O wait time. Below are the
typical results from procview run on the results collected by
procstat collected during a benchmark run:

Table 1. Procstat statistics for Abaqus Experiment

File Unit FIle Size(MWs) I/O wait time(seconds)

2 23 246

1 3 34

19 3 51

23 3 0

21 2 4

10 2 100

22 1 0

25 1 1

30 1 1

280

CUG 1995 Fall

 Proceedings

The experiments that we decided to try were:

1. Vary the number of CPUs by changing the environmental
parameter NCPUS.

2. Change the I/O behavior with ASSIGN commands

a. Assign file FT02 to the ldcached /tmp file system

b. Assign file FT02 to be a memory resident file

c. Use the ABAQUS EIE FFIO I/O layer to manage file
FT02

At ARSC, the /tmp file system is ldcached with 1 MB of the
1 GW DRAM memory allocated as a buffer for files on the /tmp
file system. Another I/O optimization allocates memory in the
user’s job to act as a RAM disk for the entire file. This is the
strategy of making the most active files “memory resident”.[7]
A third alternative is to use the EIE FFIO layer provided by CRI
that specifically optimizes I/O on Abaqus jobs[8].

The results from the utility “ja” of these experiments are
summarized in Tables 2 and 3 below.

All of these runs were made during the typical batch time at
ARSC. From these results we can see that using more than the
default I/O can have significant reductions in wall clock time but
that multiprocessing did not always reduce wall clock time. In
particular, using 8 CPUs always increased the time that the user
waited for their job to finish.

Wall clock time and CPU time are only two metrics that
concern our users. Most ARSC users are given a certain number
of “Service Units” and use of that unit is the quantity to mini-
mize. At ARSC we have a particularly simple algorithm for
computing SUs (Service Units):

SUs =

= 1.000 * YMP time (CPU hours)

+ 0.050 * T3D timetable hours)

+ 0.005 * Memory*YMP time (MWords hours)

+ 0.003 * Disk real time (GByte hours)

+ 0.003 * DMF Silo real time (GByte time)

+ 0.000 * CRL tape time

Using the statistics from the utility ja we can also produce a
table of the SU charges for each of the above experiments. The

Table 2. Wall clock time for Abaqus experiments(seconds)

Number of CPUs 1 2 4 8

Using /tmp 819 589 750 1123

Memory Resident 441 580 454 477

EIE FFIO layer 428 427 432 558

only other term relevant to the above algorithm is the
time-memory integral as shown in Table 3:

Combining the results of Table 2. and Table 4. with the SU
charging algorithm we can produce the SU charges for each of
the Abaqus experiments:

From these experiments, ARSC is able to suggest to its many
Abaqus users the following recommendations:

1. Using either memory resident files or the EIE FFIO layer can
greatly reduce I/O wait times (and therefore wall clock time)
on large Abaqus runs.

2. The memory resident file produces a lower time-memory in-
tegral than the EIE FFIO file. However the EIE FFIO file uses
less system time than the memory resident file.

3. On ARSC’s YMP, both the memory resident file and the EIE
FFIO file perform equally well, but given that the memory
resident file is much easier to use, we recommend using
memory resident files. On other YMPs, that do not have 1
GW or memory, this recommendation may not be valid

4. SU charges are always higher for multiprocessor Abaqus
jobs, but the wall clock times are not always shorter.

MATLAB Results

Another package in use at ARSC is MATLAB, ARSC has
version 4.1.1. From the MATLAB User’s Guide[3] we have:
“MATLAB is a technical computing environment for
high-performance numerical computation and visualization.” At
ARSC the combination of SGI workstations has an interface to
MATLAB running on the YMP is an attractive combination. But
as is well known in the CRI world, not all problems are well
solved by one computational environment.

The version of MATLAB that was installed at ARSC was a
multitasked version that used multiple CPUs if the user allowed
it. The number of CPUs specified by the NCPUs environmental
parameter determined how many CPUs were used for each
MATLAB session. By default at ARSC, NCPUS is set to 4 so

Table 3. CPU time-memory integral (Mw-seconds) for Abaqus exper.

Number of CPUs 1 2 4 8

Using /tmp 4237 4237 2395 2121

Memory Resident 9648 9886 9674 9626

EIE FFIO layer 11643 11631 11714 11735

Table 4. SU charges for Abaqus experiments

Number of CPUs 1 2 4 8

Using /tmp 484 486 494 497

Memory Resident 462 475 474 479

EIE FFIO layer 462 465 477 488

CUG 1995 Fall

 Proceedings

281

unless the user specified otherwise, MATLAB was always
running with 4 CPUs.

For some problems this maybe appropriate, in particular
linear algebra problems on CRI machines can produce good
speeds and speedups on multitasked code. To investigate
whether this was the case with multitasked MATLAB we chose
the two LINPACK[6] Benchmark problems to be solved with
MATLAB and various other libraries. The problems factor and
solve two systems of linear equations, one system has 100 equa-
tions, the other has 1000 equations.

There are several methods available for solving such systems
of linear equations and because the linpack benchmarks have
been around for more than 15 years, products have developed
features to solve these specific problems. The six methods of
solving these problems that we measured were:

1. A simple compilation of the Linpack Benchmark source code
with the -Zp option. This way is insufficient to achieve either
good vectorization or any multitasking.

2. A replacement of the Fortran Linpack and Blas routines of the
Linpack Benchmark with the optimized versions in Libsci.

3. A compilation of the Linpack Benchmark source code with
inlining turned on, so that the Blas routines are inlined into
the Linpack routines. This provides the compiler with a nest
of three DO loops that can be efficiently vectorized and mul-
titasked.

4. A version of the Linpack Benchmark with the calls to Lin-
pack factor and solve routines replaced with similar calls to
the Lapack factor and solve routines. These Lapack routines
are supplied from Libsci and are well vectorized and multi-
tasked.

5. Using the IMSL[5] routine lsarg.

6. Using the simple MATLAB script:

n = 1000;
A = randn(n);
for i = 1: n

B(i,1) = 0.0;
for j = 1: n

B(i,1)=B(i,1)+A(i,j);
end

end
C = A \B;
In tables 6 and 7 below we summarize the mflop/s rates for

each method on 1, 2, 4 and 8 CPUs on the 1000 by 1000 case and

in tables 8 and 9 below we summaries the results for the 100 by
100 case.

For most uniprocessor run we used the CPU timer second() to
solve the factor and solve sections of code. For MATLAB there
was no CPU timer so we used statistics from “ja” and subtracted
away the overhead of matrix generation and output. For most
multiprocessor runs, we used the real time clock timer RTC()
and for MATLAB there is a built in pair of functions to measure
wall clock time(tic/toc).

Several observations can be made from the tables of data:

1. On the ARSC YMP M98 there is a tremendous variance in
uniprocessor times, depending on whether the run is in dedi-
cated mode or batch mode. This is most likely due to the
DRAM memory that is shared by all users in batch mode.

2. The results for both dedicated and batch runs of the 100 by
100 problem reinforces the contention that multitasking has
no advantage for small problems.

3. For the 1000 by 1000 case we see decreases in wall clock
times in both dedicated and batch mode for those options that
multitask well: Libsci linpack routines, Libsci Lapack rou-
tines and compilation for multitasking after inlining.

4. IMSL and MATLAB do contain some multitasking capabili-
ty but it is not as good as the other methods provided by CRI.

5. MatLAB and the Linpack and Blas solution behave similarly
on the large problem, but MATLAB shows less performance
on the smaller problem because of a larger overhead.

Table 5. Results(mflop/s) for 1000x1000 Solution in dedicated mode

Number of CPUs 1 2 4 8

cf77 -Zp 135 135 135 135

Libsci Linpack +
Blas routines

131 251 442 647

cf77 -Zp -Wd-68 275 472 750 886

Libsci Lapack +
Blas routines

300 555 938 1285

IMSL 166 238 302 306

Matlab 126 232 391 535

282

CUG 1995 Fall

 Proceedings

Table 6. Results(mflop/s) for 1000x1000 Solution in batch mode

Number of CPUs 1 2 4 8

cf77 -Zp 91 89 93 96

Libsci Linpack +
Blas routines

92 177 324 529

cf77 -Zp -Wd-68 172 315 630 500

Libsci Lapack +
Blas routines

261 442 647 781

IMSL 148 200 217 230

Matlab 86 134 312 475

Table 7. 100x100 Results(mflop/s) for Solution in dedicated mode

Number of CPUs 1 2 4 4

cf77 -Zp 32 32 32 32

Libsci Linpack +
Blas routines

84 105 120 142

cf77 -Zp -Wd-68 151 151 151 151

Libsci Lapack +
Blas routines

157 148 148 148

IMSL 23 24 24 24

Matlab 57 60 61 61

References

1. Abaqus Introduction to ABAQUS/Standard, Hibbit, Karlsson & Sorensen
Inc., Pawtucket, RI,1994.

2. Abaqus Version 5.3 Timing Runs, Hibbit, Karlsson & Sorensen Inc., Paw-
tucket, Rhode Island, July 26, 1994.

3. MATLAB User’s Guide, The MATH WORKS Inc., Natick, Massechu-
setts,1992.

4. Linpack User’s Guide, JJ. Dongarra, C.B. Moler, J.R. Bunch, G.W. Stewart,
SIAM, Philadelphia 1979.

5. IMSL User’s Manual, Visual Numerics Inc., 1994.
6. Jack Dongarra. Performance of Various Computers Using Standard Linear

Equations Software. Computer Science Department University of Tennes-
see, Report CS-89-85.

7. Neil Storer. I/O Optimization Under UNICOS. Proceedings of the Cray Us-
er’s Group Meeting, Spring, 1994.

8. Jeff Zais and John Bauer, I/O Improvements in a Production Environment.
Proceedings of the Cray User’s Group Meeting, Spring, 1994.

Table 8. Results(mflop/s) for 100x100 Solution in batch mode

Number of CPUs 1 2 4 8

cf77 -Zp 26 26 27 26

Libsci Linpack +
Blas routines

67 91 89 65

cf77 -Zp -Wd-68 122 118 127 112

Libsci Lapack +
Blas routines

126 107 110 119

IMSL 17 20 20 20

Matlab 35 41 48 42

