

CUG 1995 Fall

 Proceedings

287

Expanding the Use of Parallel Processing in a Commercial
Structural Analysis Code

Eugene L. Poole

, Cray Research, Inc., Eagan, Minnesota

ABSTRACT:

This paper describes new work with the ANSYS structural analysis finite element
code which significantly expands the use of parallel processing on CRAY PVP (parallel/vector
processor) machines. Many key applications programs on CRAY systems now have parallel
solvers. The ANSYS program, a widely used general purpose Finite Element analysis code, has
now expanded parallel processing to include parallel element computations and CFD analyses.
The parallel processing model used by the ANSYS code for parallel element generation required
the use of Cray macrotasking. The results presented will show that macrotasking and auto-
tasking models work very well within a single code reducing time to solution, for single jobs as
well as multiple runs on multi-user systems. The improvements in performance are demon-
strated both for very large and smaller model nonlinear analyses. Examples will be given from
real customer benchmarks on the CRAY J90 and C90 systems.

Introduction

This paper describes new work with the ANSYS structural
analysis finite element code which significantly expands the use
of parallel processing on CRAY PVP machines. The new work
demonstrates effective use of two different implementations of
parallel processing within the same application and extends the
use of parallel processing from very large model analyses to
small and medium models used in many nonlinear analyses.

The new parallel processing capabilities in ANSYS Version
5.2 are motivated by the availability of multi-processor
computer systems with shared memory architectures and similar
parallel processing functionality across different hardware plat-
forms. Shared memory architectures of CRAY PVP machines
and several current high end workstation platforms provide a
more convenient platform to adapt large existing codes for
parallel processing. Common functionality on the various
shared memory machines allows vendors to design a parallel
processing model which can be implemented with few hardware
specific changes required in the source code. This approach
does not lead to scalable performance on MPP (Massively
Parallel Processing) type architectures but is effective for small
numbers of powerful processors and is most practical for use
with existing codes where complete rewrites of the program are
not currently considered practical.

 The organization of this paper is as follows. First, a descrip-
tion of the use of parallel processing in the ANSYS code is
given. Past work to exploit parallel processing capabilities on

CRAY systems in both frontal solvers as well as I/O operations
is summarized. New work which uses CRAY macrotasking
calls to implement a new ANSYS parallel processing library is
described. Design changes made by ANSYS, Inc. to the
ANSYS code to make parallel processing of element computa-
tions possible are summarized and the implementation of the
parallel processing library for CRAY systems is described.
Second, results are presented from several representative
ANSYS analyses. The results demonstrate improvements in
time to solution for both large and small problems on both the
CRAY C90 and J90 systems. The improvements in time to solu-
tion come from both increased use of parallel processing and
improvements resulting from the use of the ANSYS PowerSolver
and new CRAY optimizations for this solver in Version 5.2.

Description of ANSYS 5.2 Parallel Processing

The new parallel processing capabilities in ANSYS 5.2 add
to the existing use of parallel processing in this general purpose
finite element analysis code. This section briefly describes
previous work to exploit parallel processing on CRAY systems
in the ANSYS program. The previous use of parallel processing
includes autotasking directives in the ANSYS frontal solvers
and parallel I/O capabilities through the use of the CRAY EAG
FFIO library. New parallel processing capabilities added in
ANSYS Version 5.2 are described. The ANSYS parallel
processing design for Version 5.2 is outlined in general terms
and a description of the CRAY implementation of this library is
given.Copyright © Cray Research Inc. All rights reserved.

288

CUG 1995 Fall

 Proceedings

Parallel Frontal Solver and new Iterative PowerSolver

Previous parallel performance improvements in ANSYS
were concentrated in computationally intensive frontal solvers
[1] and [2]. The solvers were optimized for the CRAY PVP
architecture without requiring extensive code changes.
Sustained performance of as high as 6 Gflops were obtained on
very large model analyses where the frontal solver dominated all
other computations [3].

However, beginning with version 5.1 of ANSYS, a new iter-
ative solver was added to the ANSYS program resulting in order
of magnitude reductions in the computational cost of solving
large linear systems. The iterative solver, now referred to as the
ANSYS PowerSolver, is described in [4] with examples illus-
trating the reduction in computational cost compared to the
frontal solver. The PowerSolver is a preconditioned conjugate
gradient solver with an element specific preconditioning tech-
nique. The PowerSolver functions as a true "black-box" solver
with no parameter adjustments required and is fully imple-
mented in ANSYS, beginning with Version 5.1, as an alternative
solver to the traditional frontal solver. The PowerSolver is opti-
mized for CRAY architectures for the ANSYS 5.2 release with
further improvements planned for the ANSYS 5.3 release
including a parallel implementation and further vectorization
improvements.

Parallel Processing of I/O

I/O performance, often a major bottleneck in reducing
elapsed time to solution, was also reduced significantly begin-
ning with ANSYS Version 5.0. Though not often considered as
parallel processing, CRAY PVP systems use multiple levels of
parallelism within the design of the I/O subsystem to deliver
very high data transfer rates. The CRAY Applications EAG
FFIO library, used extensively within many I/O intensive Appli-
cations codes, reduces elapsed time by using an intelligent
read-ahead write-behind cache which runs concurrently with
program execution see Refs. [1] and [2]). Large files, such as the
ANSYS element files (emat, esav, osav and erot) and factored
matrix files (tri) are written and read asynchronously, in parallel,
to and from disks across multiple physical drive units. As a
result, on multiple-user PVP systems very high rates of data
transfer are achieved and real elapsed time speedups are possible
for multiple CPU runs.

Parallel Processing Extended to Element Computations

The order of magnitude improvements in solver cost made
possible by the new PowerSolver and increased use of nonlinear
solution methods in ANSYS have shifted the focus of perfor-
mance from solvers to element computations. Though element
computations are inherently independent operations are thus
well suited for parallel processing they present implementation
challenges, particularly for large-scale existing codes.

In finite element codes elements are the basic building
blocks. Physical models, often with complicated geometries, are
divided up into simple triangular and/or square elements in 2-D
models and tetrahedron and/or cubic solid elements in 3-D. The

physical characteristics of the simple elements are represented
through various mathematical models and the sum of these
simple elements into a global model leads to an approximation
of the solution of the large complicated physical system. In the
ANSYS code over 100 different elements types are used as
building blocks for a wide range of analysis types. The total
number of elements typically used to represent a physical system
ranges from a few thousand to hundreds of thousands.

Historically, in FEM (Finite Element Method) programs the
cost of forming and evaluating elements was linear with the
problem size while the cost of solving the global linear systems
formed using the elements was quadratic with problem size. For
larger and larger models the equation solution time grew to
completely dominate the computational cost of analyses.
However, with the use of new robust iterative solvers, such as
the ANSYS PowerSolver, the cost of solving the global linear
systems is now also linear with problem size so that the cost of
element computations is much more dominant.

The cost of element computations, particularly on vector
architectures, is further magnified by the fact that the element
matrices are very small and the computation rates achieved on
these computations are usually much lower than the rates
achieved by the solvers. In addition, most commercial FEM
codes have not been optimized to reduce the cost of element
computations and they achieve a small fraction of peak perfor-
mance on both vector and workstation platforms.

Due to the number of element routines in a typical general
purpose FEM program and the generality of analysis capabilities
desired the focus of design in these codes has been to concentrate
on computing a single element at a time and the addition of this
small unit of data to a very large database system. Often the
control and execution of the element level computations exceeds
the cost of the actual computations to form the element matrices
or compute element results using the element matrices. Further
work in this key performance area could result in order of magni-
tude reductions in computation cost for many programs.
However, in most cases the changes required to improve the
speed of element computations require redesign of a significant
portion of the FEM program.

One method of reducing the cost of element computations is
to use parallel processing. The element computations are largely
independent and are natural choices for the use of multiple CPU
resources. Even so, adding parallel processing to a large existing
code requires careful design changes to the data structures and
the logic in the code. In ANSYS version 5.0, released in March
1993, extensive design changes were made by ANSYS, Inc. to
revise the database for the use of parallel processing. Version
5.1, released in October 1994, introduced the PowerSolver.
Version 5.2, scheduled for release in October 1995, will feature
parallel processing of element computations as well as addi-
tional parallel processing in the CFD analyses. The Applications
division at CRAY has worked closely with ANSYS, Inc. to
insure that the parallel processing model used for the element
computations runs efficiently on CRAY systems while

CUG 1995 Fall

 Proceedings

289

preserving the existing parallel solvers and parallel I/O library
from previous versions.

ANSYS Parallel Processing Considerations

The major considerations in parallelizing ANSYS element
computations were the data used for elements and the actual
computations of the elements. Globally, shared data is stored by
the ANSYS program in common blocks separated by their func-
tion. In ANSYS a database file, stored in main memory with
possible spillover to a disk file, stores all element data such as
element types, node coordinates and material properties. The
database is accessed through a single set of file buffers using a
library of database access routines which copy specified data
from the database to a set of buffers. In the parallel processing
model the database is located in shared memory and the single
set of file buffers are shared by all processors. This arrangement
requires the use of locks, or critical regions, to insure that only
one processor can access the shared data or buffers at a given
time. The critical region is required for every database access in
parallel regions for both read and write operations. While this
approach is not scalable it required the least change to existing
code. On CRAY systems no noticeable degradation in parallel
performance from the critical regions has yet been observed.

In addition to database access, all shared data within parallel
regions is stored in named common blocks or passed into
element routines as arguments. Data which is local to each
process is declared within the given routine. The parallel
processing model used by ANSYS assumes that variables
declared within a subroutine are local unless in a named
common block. In this manner. no vendor specific variable
declarations were required in the ANSYS routines to identify
local and shared variables. This convention follows the CRAY
multitasking models and required no CRAY-specific changes.

Finally, parallel computations in the element routines were
isolated by calling driver routines in parallel from a common
subroutine. 1 illustrates the general flow of computations in an
FEM program, identifying three major areas where element
routines are used. Element geometries are typically checked for
errors in specified input or for excessive distortion. These
element checks require no interprocessor communication other
than that required to access the data for each element. Element
formation typically involves extracting the element specific
geometry and material information for each element from the
global database and the forming one of more small element
matrices through calls to various routines depending on the
specific element type chosen.

For nonlinear analyses the global linear system results are
used to compute element level results and the new results are
used to update the element matrices or the loads applied, or both.
If elements are recomputed at each iteration the element forma-
tion is repeated each time. If only loads are updated the same
linear system is solved with new loads and the element results
are recomputed. The iterative process continues until some
convergence criteria is satisfied. For each element computation
block in Figure 1 element data is extracted from the global data-

base for each individual element and computations using that
data are carried out with possible I/O operations at the end of the
computations.

Figure 2 illustrates the general flow of computations for the
element formation block in Figure 1. Even though many
hundreds of routines are involved in computing the elements
used in ANSYS only a few routines with calls to parallel
processing library routines were required to execute the element
computations in parallel. A general setup routine is called to
initialize data structures and files used for element matrices. The
setup routine calls a parallel driver routine which calls the
element driver routine on multiple processors.

Each element driver routine executes identical code but
obtains unique elements via critical regions where each
processor obtains the next element. The beginning of the
element driver routine is structured to allow only one processor
at a time to obtain the next element number and required infor-
mation for that element. Computations for that element then
proceed by calling the appropriate element routines. When
element computations are complete the element matrices are
written to a single element matrix file, again in a critical region.
The lock variable used for output is different from the database
lock so different processors can be active in each critical region
simultaneously. Though the computations required to form each
element matrices are dominant this model of element computa-
tions requires very efficient hardware and software support for
the critical regions. I/O bottlenecks on any hardware system
would also reduce any potential benefit from parallel processing.
Hardware specific changes to implement parallel processing
were confined to a set of library routines provided by ANSYS to
each vendor. The basic structure of the ANSYS parallel
processing library is described next.

ANSYS Parallel Processing Library

Figure 3 lists the major components of the ANSYS parallel
library. This library was designed in prototype form and modi-
fied with specific system calls for each hardware system. For
example, the PPFRKn routines call the CRAY TSKSTART
routine while PPLOCK calls the CRAY system routine
LOCKON. The ANSYS parallel library defines all of the neces-
sary functionality for parallel processing and confines hardware
specific changes to these routines only. The parallel element
computations are not loop-level parallel operations but rather are
task-level operations. Each element operation typically involves
database accesses and then computations using a set of nested
subroutines to complete the task. All database accesses are
locked so that the database file buffers are never used by more
than one process at a time. Multiple lock variables are defined in
the ANSYS parallel library and they are used according to func-
tion.

The ANSYS parallel library stores information required for
the various parallel operations (such as the lock variables, the
number of CPUS active, etc.) in a shared named common block.
The information is read or modified through the use of parallel
library routines, PPINQR and PPINFO, respectively. The

290

CUG 1995 Fall

 Proceedings

parallel library assumes a thread-like parallel processing envi-
ronment and provides routines to resume and suspend threads
(PPRESU and PPPARK) as well as barrier-like synchronization
via PPSYNCI and PPSYNC. Individual processor identification
is provided by the PPPROC routine. A call to this routine returns
an integer from 0 to NPROC - 1, where NPROC is the number
of processors used. The ANSYS program allows users to
configure the number of processors used at run time as well as
the level of parallel processing used. Users may run solvers only
in parallel or elements only or both. The default configuration is
to run with all parallel processing enabled. CRAY users may
also choose to run ANSYS in parallel by just setting the environ-
ment variable NCPUS to the desired number of processors.
Since this variable is set by default on many systems the ANSYS
program will run in parallel by default.

CRAY Macrotasking Library for Version 5.2

The ANSYS parallel library functionally resembles a tasking
form of parallelism. CRAY macrotasking calls for each function
were easily implemented within the various routines. The
ANSYS library also provided for thread based parallel models
used on other parallel systems and much of this functionality
was not required or used in the CRAY implementation. For
example, the PPFRKn routines defined in the ANSYS parallel
library are implemented using calls to the CRAY TSKSTART
routine. If the number of processors, NPROC, is greater than
one, then NPROC-1 calls to TSKSTART are executed, each
calling the routine named in the call to PPFRK, with the master
process calling the same routine. When NPROC-1 processes
finish their work in the various element driver routines they
return to the PPFRK routine where a call to TSKWAIT
completes the PPFRK routine. The call to TSKWAIT automati-
cally suspends the processes until the next PPFRK routine. The
master process continues program execution. The ANSYS
parallel library PPRESU and PPPARK routines are not needed
on CRAY systems. The TSKWAIT routine also performs the
function of synchronization, since program execution waits until
all tasks complete, so the PPSYNCI and PPSYNC routines are
also not used.

Timing considerations for the parallel processing computa-
tions provided a challenge within the ANSYS code. Though
there are many ways to time user and system CPU and elapsed
time within applications many of these standard routines do not
work in parallel processing regions. For example, the ANSYS
code uses the UNIX TIMES function to return elapsed time, user
CPU time and system CPU time. A simple C routine is called
from FORTRAN to compute these times from the C structures
defined for the TIMES function. In parallel execution the times
command does not return correct results for CPU times. Instead
of using TIMES, the FORTRAN routine second is used to
compute elapsed CPU time around each PPFRK call. The
TIMEF function returns elapsed time for each PPRFK routine
and the cumulative CPU and elapsed time for each parallel
region are saved and printed at the end of program execution.

Results

The results presented in the following section come from runs
with the pre-release version 5.2 of ANSYS. Most runs were
made on non-dedicated systems and are given to demonstrate
typical parallel processing performance in multi-user computing
environments. They illustrate that significant elapsed time
reductions occur using parallel processing even on multi-user
systems. The major observed benefit from the new parallel
processing features in ANSYS 5.2 is that a greater set of ANSYS
problems now benefit from parallel processing. Many of these
problems are very long running, I/O intensive nonlinear analyses
where element computations dominate the compute time.
Results are presented from runs on CRAY J90 systems for small
and medium-sized jobs as well as some very large model exam-
ples from the CRAY C90.

CRAY C916 Large Model Examples

CRAY C90 results, demonstrated next, illustrate changes in
ANSYS large model performance due to both parallel
processing and the use of the iterative PowerSolver in place of
the frontal solver. The parallel processing of elements effec-
tively reduces time to solution as shown in the elapsed time
comparisons with CPU time and the new solver technology
further reduces solution time, even though the new solver runs at
a substantially lower rate than the frontal solver.

Half-Million D.O.F. Example

Figure 4 illustrates the demands of the largest ANSYS
models attempted on CRAY systems as well as the improve-
ments in both solver and parallel processing performance from
Version 5.1 to Version 5.2. The 574 D.O.F. model used in this
analysis is one of the largest ANSYS examples attempted to date
using a full nonlinear analysis. The analysis is designed to simu-
late cyclic thermal loading on a current design of a CPU chip
used in high-end workstations. The loads on solder joints caused
by wide temperature variations often causes failures and this
analysis attempts to simulate this behavior using a detailed
model of the chip components. Initially, the simulation was
attempted using a CRAY C90 running ANSYS Version 5.0a.
The ANSYS analysis was run for 24 hours on a dedicated
machine using the parallel frontal solver with NCPUS set to 4.
The analysis ran at a sustained rate of almost 1 Gflop, using 27
Gbytes of disk file storage and moving over 3/4 of a Terabyte
of data. Nevertheless, only one half of the first thermal cycle was
completed and completion of this analysis would have required
nearly 2 weeks of dedicated time.

Recently, the same analysis was run using ANSYS 5.2 with
the optimized PowerSolver and parallel element generation.
This run was made on a non-dedicated system and was able to
complete 18 cumulative iterations in the first thermal load cycle,
4 more than in the previous run, in half the elapsed time. Disk
storage was reduced significantly as well as the data transferred
due to the use of the PowerSolver. The table in Figure 4
compares solver time for a single iteration of this analysis. The
PowerSolver requires 50 times fewer operations to obtain the

CUG 1995 Fall

 Proceedings

291

linear system solutions at each step. Though the frontal solver
runs at peak rates on the CRAY PVP systems the PowerSolver
is still significantly faster in execution time. Future optimiza-
tions are expected to double the computation rate for the Power-
Solver and addition of parallel processing as well will reduce the
time to solve the linear systems for each iteration from over 2
hours to just minutes. The parallel speedups in Figure 4 for the
Version 5.2 run are entirely from parallel element computations
and are comparable with the Version 5.0a runs where only the
frontal solver was running in parallel.

Two Large Model Contrasting Examples

Figures 5 and 6 illustrate the changing nature of large model
ANSYS runs resulting from new solver technology and parallel
element generation. Figure 5 is a smaller 295k D.O.F. model
analysis of the electronic chip described previously. This anal-
ysis was completed for 8 thermal load cycles on a CRAY C90
system using dedicated and multi-user runs over a one week
period of time. The jobs accumulated 123 hours elapsed time
with 88 hours of CPU time and sustained 255 Mflops. 8 Gbytes
of disk storage were required and over 2 Terabytes were trans-
ferred to disk.

Recently, an engine cylinder head analysis was run for a
single load step requiring 18 cumulative iterations. This model
was run on a CRAY C90 system using ANSYS 5.2 and results
were also obtained for this model run on a Sun Solaris worksta-
tion. The previous analysis using the frontal solver would prob-
ably not have been practical on a Solaris workstation, both for
I/O considerations as well as elapsed time. The job would have
required many weeks to complete. Now, with the PowerSolver
this job can be solved on the workstation although the 600
Mbytes of main memory required for this analysis would
completely dominate memory on most workstations. The
sustained performance on both the Solaris and the C90 are well
below their peak speeds. The computation rates reflect the much
lower rates obtained for element computations. The CRAY
performance for this job illustrates the performance of parallel
element computations in ANSYS 5.2. The number of parallel
routine calls was 42 for this analysis and over half of the CPU
time of 3.7 hours was incurred in these parallel regions.

CRAY J90 Examples

The CRAY J90 results in this section illustrate ANSYS
version 5.2 parallel processing performance on small models as
well as a medium sized nonlinear analyses. A job throughput
example illustrates parallel processing performance for an
ANSYS 5.1 run of several jobs on an 8 CPU CRAY J90 system.
All three examples illustrate parallel processing performance in
multi-user environments on the CRAY J90 system.

Small Model Performance

Figure 7 illustrates ANSYS 5.2 performance for two small
model examples. The first, a 7k D.O.F. Nonlinear Analysis run
for the first of many load steps, runs at under 10 Mflops on a
CRAY J90 system. The CPU time accumulated in 48 calls to

parallel regions is nearly 2/3 of the total CPU time for the anal-
ysis. The parallel speedup in the parallel regions is over 3.6
(parallel CPU time divided by Parallel elapsed time) and the
overall reduction in elapsed time is 1.8. Previously, small
models runs such as this example, which run at very low Mflop
rates on CRAY systems did not benefit at all from the parallel
processing of the frontal solver. Now, with over 2/3 of the CPU
time spent in parallel regions a significant elapsed time reduc-
tion is achieved. The total time for this small model analysis is
many hours so the reduction in elapsed time due to parallel
processing is a significant improvement over previous ANSYS
performance. Models such as these also illustrate to need for
continued performance improvements in the element processing
computations.

A second example in Figure 7 shows parallel processing
performance for a 31k D.O.K. eigenvalue analysis. Seven calls
to parallel routines were executed in this run and the total
elapsed time was less than the CPU time for the multi-user run
even though the CPU time in the parallel regions was less than
half of the total CPU time for the job.

Driveshaft Yoke Assembly Nonlinear Analysis Example

Figure 8 compares three runs of a complete nonlinear analysis
of a driveshaft yoke assembly. The runs were all made on a
lightly loaded CRAY J90 system using ANSYS 5.1 and 5.2 and
also comparing the frontal solver in ANSYS 5.2 with the Power-
Solver. The finite element model in this analysis was 39k
D.O.F.s and the analysis used 15 separate load steps requiring a
total of 189 cumulative iterations. Improvements in the Power-
Solver performance on CRAY systems from ANSYS 5.1 to 5.2
are demonstrated by reduced CPU time for the 5.2. The major
benefit in this analysis was from parallel processing since the
elapsed time was nearly halved. The PowerSolver runs required
a significant amount of I/O but only 1/3 of that required by the
frontal solver. The ANSYS frontal solver achieved an impres-
sive 281 Mflops of sustained performance on this job but it still
slower than the PowerSolver in time to solution.

Parallel Processing Throughput Example

The final CRAY J90 example, Figure 9 demonstrates parallel
processing performance for multiple job mix. The 3 jobs were
run in a multi-user environment using the same ANSYS model.
One job, JOB1, required 2 cumulative iterations while the
remaining 2 were single load step static analyses. Each job ran
with the environment variable NCPUS set to 3. The first job was
started concurrently with the second on an 8 CPU CRAY J90
system which was also running 2 additional jobs. The third job
started immediately after the second job finished. Each job
finished in less elapsed time than CPU time and the total job mix
finished in just over one hour. If the jobs were run in single CPU
mode the first job would have required at least 1 hour and 14
minutes elapsed time, assuming no I/O wait time and no job
swapping. These jobs all ran ANSYS Version 5.1 using parallel
processing only for the frontal solver. Repeat runs of the indi-
vidual jobs using Version 5.2 show further reduction in the

292

CUG 1995 Fall

 Proceedings

elapsed time when the element computations are also run in
parallel.

This example demonstrates that the parallel processing used
in the ANSYS code works not just for single large jobs on dedi-
cated systems but is also effective on multi-user systems.

Summary

This paper has described new parallel processing improve-
ments in the ANSYS program. The new improvements expand
the use of parallel processing in ANSYS into small and medium
sized models which require hundreds or even thousands of anal-
ysis iterations. Substantial reductions in elapsed time are demon-
strated for customer supplied example from runs made on
multi-user systems. The results demonstrate an improved
capacity to solve a wide range of ANSYS analyses efficiently on
CRAY systems. The efficient implementations of parallel
processing for both autotasking loop-level parallelism and
task-level macrotasking on CRAY systems coupled with the use

of the EAG FFIO library to reduce I/O wait time deliver this
performance within this important structural applications
program.

References

[1] Eugene Poole, Dawson Deuermeyer, Doug Petesch, Omar Souka, Tom
Hewitt, and Michael Heroux. The Impact of Cray Direct and Iterative Equa-
tion Solvers in Industrial Applications Codes. In

1992 Fall Proceedings
Cray User Group

, pages 49--62, CUG Secretary, 1111 Stewart Avenue,
D09-GHQ, Bethpage, NY 11714, September 1992.

[2] Eugene Poole, John Bauer, Troy Stratton, and Tom Weidner. Large-Scale
Nonlinear Structural Analysis Simulation on CRAY Parallel/Vector Super-
computers.

Computing Systems in Engineering

, 4(4):405-414, 1993.

[3] Eugene Poole and John Bauer. Achieving GFlop Performance for ANSYS
Analyses on the CRAY C916 Supercomputer. In

Proceedings of 1994 AN-
SYS Conference and Exhibition

, pages 13.3-13.12, ANSYS, Inc., P.O. Box
65, Houston, PA, May 1994.

[4] Eugene Poole, Mike Heroux, Pravin Vaidya, and Anil Joshi. Performance of
Iterative Methods in ANSYS on CRAY Parallel/Vector Supercomputers.
To appear in

Computing Systems in Engineering

, 1995.

Build FEM Model
& Define Loads

Form Elements

Check Elements

Assemble Global
Linear System

Solve
Linear System

Compute
Element Results

Postprocess Results

Loop for
Nonlinear Analyses

Figure 1: Finite Element Method Analysis Flowchart.

CUG 1995 Fall

 Proceedings

293

Figure 2: Parallel Element Generation Flowchart.

Figure 3: ANSYS Parallel Library Organization.

Figure 4: 574K D.O.F. Large Model Nonlinear Analysis
Example.

Figure 6: Large Model Nonlinear Analysis Using
PowerSolver.

Figure 5: Large Model Nonlinear Analysis
Using Frontal Solver

294

CUG 1995 Fall

 Proceedings

Figure 7: Small Model CRAY J90 Examples.

