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ABSTRACT: 

 

Although parallel computers have been in existence for a number of years, the
majority of code currently being utilized is sequential.  One reason for this is the difficulty in
converting sequential code into parallel code.  To combat this problem, a compiler technique
for automatically converting FORTRAN programs to CRAY T3D MPP FORTRAN form was
developed.  The automatic parallelization focuses on assuring both the correctness of the
converted programs and the effective distribution of shared loops.  Programs were tested and
compared with manually parallelized programs.  The results indicate that automatic parallel-
ization is possible and that the effect can be as good as manual parallelization.

 

1 Introduction

 

Scientists wanting to access the computational powers of
parallel machines usually have to change their programming
model and way of thinking to effectively and efficiently utilize
the capabilities of  parallelization. The effort needed to accom-
plish this change discourages many from taking advantage of
parallelization.   Unfortunately, there are no widely available
effective tools to aid individuals in overcoming the learning
curve,  nor tools which  can automatically transform traditional
sequential programs to parallel form.

The CRAY T3D installed at Arctic Region Supercomputing
Center (ARSC) was expected to alleviate the heavy load on the
CRAY Y/MP also located there. Although ARSC has policy
encouraging the use of the T3D, most individuals lack the
expertise required to effectively convert serial code to parallel
form.  This research effort focused on alleviating the necessity
of becoming an expert in parallelizing programs.  The target
source code is the set of FORTRAN programs which have
parallel potential and which are run repeatedly, as the time
requirement for parallelizing a program which is not utilized
repeatedly may preclude the efficiency obtained by the tool. The
result of the research effort is a prototypical tool which automat-
ically transforms simple sequential FORTRAN programs into
CRAY T3D MPP FORTRAN form, facilitating  parallel
processing. 

 

2 Process

 

The overall phases in this research effort include the
following:

• T3D FORTRAN subset parser

• data dependency analysis

• parallelizable loops selection

• communication analysis

• source code conversion

The five phases are not really discrete.  All phases except the
conversion  phase are accomplished while parsing the source
code.  The data dependency analysis,  parallel loops selection,
and the communication analysis phase are applied to each
segment of the source code individually during parsing.  The
methods used for these three phases are the major focus of this
research effort.  Each of the three primary phases will be
described in detail.  The other phases will be discussed in the
remaining part of this section.

Since the focus of this research effort did not include creating
a complete FORTRAN compiler, only the most commonly used
FORTRAN statements were included.  These statements repre-
sent a subset of the FORTRAN language.  Minor modifications
would be required to allow processing of all FORTRAN state-
ments.  The chosen subset of FORTRAN allows the declaration
part of the program to contain the following statements:

• type declaration statement

• parameter statement

• array declaration statement

The executable part  of the program allows the following
types of statements:

• scalar and array assignments

• two forms of the DO statement
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• conditional statements ( IF statement, IF-THEN-ELSE state-
ment)

• I/O statements

• other non-executable statements like FORMAT, CON-
TINUE

Comments are permitted anywhere in the source code.  In
addition, the shared data declaration statement CDIR$ SHARED
array(dis) is also permitted in the declaration part.  This state-
ment does not belong to standard FORTRAN .  It is a specific
compiler directive of  CRAY T3D MPP FORTRAN.  It is
included in the grammar to allow users to determine the distribu-
tion scheme of data.  Data distribution was preferred, but not
demanded.  If no data distribution was specified, a default data
distribution was set for each array.  

Although data distribution determines the performance of the
parallelized code, the automatic determination of the best data
distribution scheme remains a theoretical research topic at this
time.  It is beyond the scope of practical parallelization.  In this
project, user’s distribution scheme was utilized if provided.  If
no scheme was given,  the same distribution scheme  for all the
arrays declared in the program  was added to the end of declara-
tion section.  The scheme used  for every dimension is block
distribution (:BLOCK).  This scheme equally divides one
dimension of an array to all the PEs  assigned to this dimension,
and thus provides a possible load balance.   This is no guarantee
that the result is best possible distribution.  

The source code in the executable section of the program was
analyzed  segment by  segment. The beginning and end of  loops
are used to divide source code into segments during parsing.  It
is important to note that  not every loop’s beginning and end can
be used for segment cutting.  Only the outermost potentially
parallelizable loop’s beginning and end can be used this way.
Code between two nested loops, including those before or after
any loops, are cut out as segments also.  For segments which
contains loops, data dependence analysis and communication
analysis are performed to select the best parallelization method.
Segments which do not include loops  are analyzed to determine
which statements should be put into  a sequential region. During
the analysis, in addition, all necessary T3D MPP compiler direc-
tives and their appropriate locations are written out. The conver-
sion phase combines these directives with the original source
code.

 

3 Parallelizing  Loops

 

The semantics of traditional FORTRAN as well as other
traditionally sequential languages, specifies a linear execution
order for the statements in a program. Sometimes such order can
be broken without affecting the consistency and integrity of  the
program. When parallelizing programs, such statements should
be found and converted to parallel form. The data dependency
analysis phase accomplished this task.

 

3.1 Data Dependency Analysis

 

Determining data dependency is a time consuming  but
important task.  All unnecessary data dependencies should be
disapproved, because they constrain the parallelization that can
be performed.  It is of extreme importance not to overlook
possible dependencies.  Thus fast, strict, but conservative depen-
dency tests are required.  Among the existing dependency test
methods, Banerjee’s inequality algorithm can satisfy the above
stated requirements.  It has been studied extensively in literature
and modified for several purposes. Banerjee’s inequality algo-
rithm was developed mainly for the purpose of optimization;
however it does fit this project’s  need for a data dependency test.
In  parallel programming, data are divided into shared data and
private data.    This was not considered in Banerjee’s algorithm.
Thus some modifications were required to meet the  particular
needs of this research effort.

Banerjee’s algorithm can be applied  directly to shared arrays.
For private arrays, if any private array appears at the left-hand
side of an assignment statement, it will prevent all the loops
outside the  assignment statement from being parallelized, even
though there may not be a data dependency for these loops.   This
occurs because every PE has a copy of the private data in its local
memory.  When dealing with private data, every PE uses its own
copy of the private data.  In the following code segment, let A be
a private array.   If the  loop,  I,  is parallelized using 8 PEs,
assume PE 0 is assigned iteration 1, PE 1 is assigned iteration 2,
etc.  After the execution of  the loop, on PE 0  only A(1) is modi-
fied.  All others remain unchanged.  If  later on, PE 0 needs to
use A(2), instead of using the modified value of A(2), the old
value  would be used.  This is not consistent with the original
sequential code.  Similar results can be seen for all the other PEs.
In order to force every PE to modify all of its private data, we
have to force the loops to be sequential.  

DO I =1, 8
      A(I) = 1
ENDDO

Another case can prevent a  loop from being parallelized even
when there is no data dependency.  For such loops, the loop
index is not used  in any subscripter expression of  an array
which appears at the left-hand side of an assignment within the
loop.  The following code segment demonstrates this case:

DO I = 1, N
  DO J = 1, M

 s:     A (I ) = A(I) +1
   ENDDO
ENDDO

In the code , there is no data dependence for  loop J according
to Banerjee’s algorithm.  For every I, s is supposed to be
executed M times and at last A(I) is increased by M.  If the J loop
is distributed among several PEs, every  PE  will try to fetch the
value of A(I), add 1 to it , and then store the result back.  Because
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of the nondeterminism of this read/write conflict, some PEs may
fetch the same old value of A(I) before another PE stores it.
This could result in inaccurate results.    For the above two cases,
the introduction of symbol ‘s’ to the dependency vector indicates
that the corresponding loop cannot be parallelized.  Also, ‘x’ in
the dependency vector indicates that there is no dependency for
that  loop.

 

3.2 Selecting Parallel Loops

 

After the data dependence analysis is completed, the results
include a dependency direction vector.  Every entry of  the
vector can be one of  ‘=‘,’<‘, ‘>‘, ‘s’, and ‘x’.  Based on this
information, potentially parallelizable loops can be determined.
The criteria are given in order of priority.

1. ‘s’ loops must be left sequential.

2.  Parallelize outer loops if both outer and inner loops can be
parallelized and they are not tightly nested.

3. Select tightly nested loops to parallelize.  If the loops are not
tightly nested, or some loops in the nested loops must be left
sequential, then choose as many  tightly  loops as possible
from the outer ones.  

4. If any loop can be proven independent, then all the nested
loops can be parallelized.  Independent means no references
with regard to this loop access the same data.

5. All outer loops whose dependency direction are ‘*’       and
cannot be parallelized.

6. If  the direction for the first parallelizable loop is ‘=‘,        then
this loop and all the ‘=‘ loops immediately follows it can be
parallelized.  

7. If the first not ‘s’ , not ‘*’ loop is ‘<‘ or ‘>‘, then      leave this
loop sequential, all inner loops can be parallelized.

 

  

 

If the dependency vector is (s, <, >, =, *), then all the loops
after ‘<‘ can be parallelized.  This criterion deserves further
discussion.  Without loss of generality,  suppose in the following
tightly nested loops, every loop index’s lower bound is smaller
than its upper bound.

DO I = I
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, I

 

U

 

    DO J = J
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        ...
    ENDDO
ENDDO

 

No matter what the data dependency direction vector may be,
the sequential semantics of the loops is: 
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quential and the J loop is parallelized, then 

 

"

 

 I

 

1

 

< I

 

2 

 

.  No matter what
J1 and J2 are, iteration (I1, J1) is always executed before iteration
(I2, J2).  So the sequential semantics are retained as the   result of
the parallelized code must be the same as the sequential code.  

 

4 Optimizing Loop Distribution

 

T3D MPP FORTRAN distributes the iterations of shared
loops based on a shared array using  the following syntax:

 

CDIR$ DOSHARED (loopindex [, loopindex, ..., 
loopindex]) on array (sub [,sub, ..., sub])

 

The T3D requires that the selected array must use at most one
loop index in each of  the array’s subscript expression, and that
no division operation is allowed in the expressions.  An iteration
is assigned to the processor where with the loop indices value the
array element is located.  For example, suppose shared array A
is distributed among 8 PEs in the following manner:  A(1) is at
PE 0, A(2) is at PE 1, etc.  If the following code segment is
executed by 8 PEs too,

CDIR$DOSHARED (I) on A(I)
DO I =1, 8
 ...
ENDDO

then iteration I =1 is assigned to PE 0, iteration I =2 is assigned
to PE 1, etc.  Knowing how a selected array is distributed, it can
be determined to which processor every loop iteration is
assigned.  If how every shared array used in the loop is distrib-
uted is also known,  comparison of the owner of  a certain itera-
tion and the owner of the array element under these  loop indices
determines  whether the reference to the array element in that
iteration is local or not.  So the total number of remote accesses
in the shared loops can be computed.  

In a loop, usually there is more than one shared array used.
Distributing  the shared loop based on a different array may
result in different  number of remote accesses.  Because remote
accesses are expensive during execution, the number of remote
accesses in shared loops should be minimized.  This emphasizes
the importance of optimizing loop distribution.  

The iterations of a shared loop form the iteration space, and
the processor elements form  the processor space.  The dominant
array actually specifies a function that  maps the iteration space
to the processor space.  The mapping may not be 1 to 1.
Different iterations can be mapped to the same processor
element.  The T3D has some constraints on the mapping
including the following: every subexpression can contain at
most one loop index, and no division operation is allowed in the
subexpression.   These constraints can preclude some arrays
used in the shared loop from being a dominant array.

The use of dominant array is for keeping data local.  The
mapping function assigns the loop iteration to the processor
which owns the element of the dominant array of this iteration.
If array A(16,8) is distributed as in figure 1,  the following code
segment  will map the iteration space of I = 6 - 16, J =1 - 8 in the
following shared loops to the processor space shown in figure 2.

 CDIR$DOSHARED (I,J) on A(I-5, J)
DO I =6, 16



 

CUG 1995 Fall 

 

 Proceedings

 

335

 

     DO J = 1,8
work
      ENDDO

ENDDO

 

Figure 1: Distribution of A(16,8) using scheme 
(8:BLOCK(4), :BLOCK) and 32 Pes.

Figure 2:  Mapping of iterations to process elements.

 

Using different arrays as the dominant array, results in
different mappings from iteration space to processor space.  The
number of remote accesses can also vary.  In order to reduce the
communication among processors, it is desirable to use the array
which results in a minimum number of remote accesses.  A
“brute-force” algorithm was used for selecting such a dominant
array.  Although arrays not referenced in a shared loop can also
be used as that shared loop’s dominant array,  it does not aid in
reducing the number of remote accesses.  So the selection is
limited to the legal arrays referenced in the shared loop.  Every
legal array is tried.  The number of remote access for the shared

 

loop is computed for each candidate.  Finally, the one with the
fewest remote accesses is used as the dominant array.  

Preliminary integrated tests were applied to FORTRAN
programs for which  manually parallelized versions exist.
Programs were first converted automatically using the data
distribution given in the manually parallelized version of the
corresponding program.  Both automatically parallelized code
and manually parallelized code were compiled by CF77 and run
on the T3D.  Outputs from the two were compared using UNIX
command 

 

diff.  

 

 This comparison was to ensure that the output is
consistent.  For comparing the performance of automatically
parallelized code, the timing function (irtc()) was added to both
manually parallelized code and automatically parallelized code
to obtain  the execution time.  The T3D parallel tool MPP
APPRENTICE was also used to verify how time was distributed
among different tasks in   the two parallel versions.  Programs
were also converted to parallel form without given data distribu-
tion.  The same comparison procedure was applied to test the
correctness and the performance of the automatically parallel-
ized program.   1, 2, 4, 8, 16, 32, and 64 processors were used in
the tests.

 

5 Results and Conclusions

 

One of the test programs utilized was a neural network
program called 

 

Backpropagation

 

.  This program had been paral-
lelized manually.  The parallel version used for comparison had
been optimized carefully by its author as well.  There is almost
nothing to do to further improve the program’s performance.
The 

 

Backpropagation

 

 program has one hidden layer.  The
parameters for the program are: 32 input nodes, 64 hidden nodes,
16 output nodes, and 1000 cycles.

From the preliminary tests, it can be concluded that the
method used in parallelizing programs is effective.  When a data
distribution is given, the automatically parallelized program can
have the best performance for the certain data distribution.
When a data distribution is not given, programs can be parallel-
ized,  and speedup can also be obtained for this case.  

At  this point, the resulting compiler tool is just a prototype.
In order to develop a practical product, many modifications and
enhancements remain to be made.  First, the finished product can
only handle a subset of FORTRAN.  Also, the syntax and
semantics analysis portions need to be modified to handle all
aspects of FORTRAN.  In this project, when doing communica-
tion analysis and selecting the best loop distribution, a
“brute-force” algorithm is used.  A more efficient algorithm
should be developed  and utilized to improve the efficiency of
the mycf77 program.  Since data distribution determines the best
performance a parallelized program can obtain, future emphasis
should be placed on determining the best data distribution for
programs. 

 

6 References

 

1. Agarwal, Anant, and Kranz, DAvid, Automatic Partitioning of Parallel
Loops and Data Arrays for Distributed Shared Memory Multiprocessores.
MIT technical report, 1993.



 

336

 

CUG 1995 Fall 

 

 Proceedings

 

2. Brooks, Jeff, Single PE Optimization Techniques for the CRAY-T3D Sys-
tem.  Benchmarking Group, Gray Research, September 1994.

3.  Cray Research Inc., MPP FORTRAN Programming Model.   March , 1994.
4. Cray Research Inc., Cray MPP FORTRAN Reference Manual.  SR-2504

6.1.
5. Cray Research Inc., Introducing the MPP Apprentice Tool.  IN-2511 1.1.
6. Fleisch, Brett Dwayne, Distributed Shared Memory in a Loosely Couples

Environment.  University of California, Loa Angeles, Ph.D.  thesis, 1989         
7. Goff, Gina,  Kennedy, Ken  and Tseng, Chau-Wen, Practical Dependence

Testing.  Rice University report CRPC-TR90103-S, November 1990.

8. Hasting, Andrew Blair, Transactional Distributed Shared Memory.  Carnegie
Mellon, Ph.D.  Thesis, 1992.  

9. Katzan, Harry Jr, FORTRAN 77.  Van Nostrand Reinhold Company, 1978

10. Meltzer, Andrew, Programming for Performance in CRAFT on the T3D.
Cray Research Inc., July 1994.

11. Wolfe, Michael, Optimizing Supercompilers for Supercomputers.  

12. Zima, Hans, Supercompilers for Parallel and Vector Computers.  Addi-
son-Wesley Publishing Company, 1990.


