

CUG 1995 Fall

 Proceedings

337

ABC: A Blocked C/C++ Parallel Programming Model

Mike Holly

 and

Bill Homer

, Cray Research, Inc.,
655-F Lone Oak Drive, Eagan, Minnesota 55121

ABSTRACT:

A model is proposed for programming massively parallel machines in the C and
C++ languages. This model, which addresses both data and execution parallelism, is designed
to achieve that parallelism with only small user-program modifications. The model is initially
proposed for implementation on massively parallel (MPP) machines, but should also be useful
for parallel-vector (PVP) and symmetric multiprocessing (SMP) architectures.

1 Introduction

 The current Cray C/C++ parallel-vector (PVP) machine
environment provides parallel operations via microtasking
(where parallelism is explicitly stated with user directives) and
autotasking (where parallelism is implicitly applied to loops via
an automatic optimizer). In either of these PVP models, execu-
tion begins with a single thread, and breaks into multiple
parallel threads in well-defined regions and tasked loops. A
thread is not associated with any particular processor.

On Cray Research’s massively parallel (MPP) machines
(Cray-T3D

TM

, Cray-T3E

TM

1

), the current parallel C and C++
approach has three components:

• message passing via calls to PVM library routines

• fast get/put operations on distributed data via shmem library
calls

• a few intrinsics (_num_pes and _my_pe)

 The current MPP model has multiple execution threads from
the beginning of the program, with each thread corresponding
exactly to one physical processor (PE).

In this paper we propose a new paradigm for parallel C/C++:
the “ABC” (A Blocked C/C++) parallel programming model.
This model is intended for eventual implementation on both
PVP and MPP machines, thus unifying parallel programming
across a diverse set of hardware. It is designed to minimize the
changes needed to convert an existing serial program into a
parallel program.

1

 Cray-T3D and Cray-T3E are trademarks of Cray Research, Inc.

2 Goals for a Parallel C/C++ Model

The ABC parallel C/C++ model has been developed to meet
a number of goals. Among the more important are:

• Require only modest changes to normal C/C++ serial pro-
grams.

• Provide high speed execution.

• Be implementable and supportable using current technol-
ogy.

• Provide support for distributed data.

• Provide prior art for future standards (unfortunately, no
present standards exist in this area).

• Be compatible with PVM (quasi-standard message passing).

We believe that the ABC model will meet all of these goals.

3 Framework

A complete programming model for C/C++ needs to address
two major areas: data distribution and work distribution. Data
distribution is particularly important for MPP machines, where
there is a significant performance penalty associated with
accessing non-local data; this is much less of a problem on PVP
machines where all of memory is directly accessible to all
processors. For work distribution, work should be done in
parallel as often as possible, and the distribution of the work
should be such as to minimize the elapsed time. On MPP
machines, this often means that work should be done where the
data resides, to minimize communication costs (“owner
computes” rule).

In the ABC model we assume, first of all, that execution
begins in parallel, i.e. that there are some number

n

 of threads
which are active at the start of the program. On an MPP
machine this is assumed to correspond to the number of physical
processors assigned to the program, which may be chosen by the
user at compile, link, or load time. We also assume that, by
default, all data is replicated on each processor, i.e. all data is byCopyright © Cray Research Inc. All rights reserved.

338

CUG 1995 Fall

 Proceedings

default

private.

 Within this framework, the ABC model
provides for both data distribution and work distribution.

4 Data Distribution

The main question in data distribution is how to partition a
data array across the local memories of the

n

processors. Many
partitions are possible. Some of the more common distributions
are

• cyclic: the array is considered linearly, and each successive
element is assigned to the next processor in sequence, wrap-
ping around to processor 0 after processor

n-1;

• blocked: some rectangular subset of the array is assigned to
each processor;

• degenerate: the entire array, or some dimension(s) of the
array, is assigned to a single processor.

In the ABC model we choose to allow a combination of
blocked and degenerate distribution, requiring that at least one
dimension of a distributed array be designated as “blocked” by
using a new keyword

block

. The general syntax for distributed
array declarations is:

type array_name[dim 0]...[dim m

block

]...[dim n];

where the keyword

block

may appear in any or all dimensions as
the last item in the brackets. The meaning of such a declaration
is that the array will have its blocked dimension(s) spread as
evenly as possible across the available processors. For an array
with a single blocked dimension, this implies a block size of:

 ceiling(dimension/number_of_processors).

As an example, consider the array declaration

 int a[20][50 block];

In this declaration the leftmost dimension is “degenerate”, i.e.
it appears in full on all processors. If compiled (or linked or
loaded) for 4 processors, the subarray a[0-19][0-12] would reside
on processor 0, the subarray a[0-19][13-25] on processor 1, etc.
The resulting arrangement is shown graphically in Figure 1.

When more than one dimension is blocked, we intend that the
compiler will allocate the array in a fashion which tends to mini-
mize the so-called “surface-to-volume” ratio, i.e. to make each
n-dimensional subblock as “round” as possible. The exact algo-
rithm for doing this is not yet specified. But as an example,
consider the declaration

 int a[20 block][50 block];

If compiled for 64 processors, the compiler algorithm could
consider the processor grid as a 4x16 array, and choose to put
something like a 5x4 subarray on each of the first 8 processors,
and a 5x3 subarray on the remaining 56 processors. Intrinsic
functions, described later, will be provided to allow the user to
determine the exact layout chosen by the compiler.

4.1 Distributed Arrays

The inclusion of the keyword

block

 designates a new C/C++
derived type, the “distributed” array. Such an array will obey the
current C/C++ rules for arrays, except that

• the memory for the distributed array is allocated in local
memory across the available processors;

• no pointer object can contain the address of a subobject of a
distributed array (no declaration involving the distributed
array may omit the blocked dimension or any dimensions to
the right of the blocked dimension);

• distributed arrays are not allowed as members of structs or
unions;

• there are implications for loops operating on distributed
arrays, as described later.

Some of these restrictions are illustrated in the code examples
in Figure 2 below.

4.2 Local Operations on Distributed Arrays

ABC also provides two operators for doing local operations
on distributed arrays,

local_address

 and

local_sizeof

.
The

local_address

 operator is useful for accessing the locally
resident portion of a distributed array via a pointer. For the array
declaration

int a[20][50 block];

we allow writing

int * local_a = local_address(a);

which causes

local_a

 on each processor to point to the beginning
of the portion of

a

which is stored in the local memory of that
processor. Figure 1 shows how the values of

local_a

are set for
this example.

An additional operator,

local_sizeof,

evaluates to the size of
that portion of a distributed array that is resident on a given
processor:

local_sizeof(array, proc_number)

provides the size of the portion of

array

 which resides on proces-
sor

proc_number

. The

array

 parameter may be either the actual
name of a distributed array, or simply a distributed array type.

local_a on proc0

local_a on proc1

local_a on proc2

local_a on proc3

a[][0] a[][13] a[][26] a[][39]

a[0][]

a[19][]

proc0 proc1 proc2 proc3

Figure 1: Layout of “a[20][50 block];” on 4 processors

CUG 1995 Fall

 Proceedings

339

Using the above declarations,, the array

a

can be set to zero
using the local pointers:

for (i=0; i<local_sizeof(a, _MY_PE)/sizeof(int); i++)

*local_a++ = 0;
The

local_sizeof

 operator is also useful in allocating a
dynamic distributed array:

int (*q)[20][50 block];

q = shmalloc(local_sizeof(*q, 0));
Here processor 0 is specified, because its local share of the

array will have maximal size. The

shmalloc

function allocates
memory from the shared heap; there is a corresponding

shfree

function which must be used to release memory allocated via

shmalloc

.

5 Work Distribution

There are many possibilities for data distribution on a parallel
system, and even more possibilities for work distribution. We
consider that the most important case involves the C

for

 loop,
and the distribution of the work in such a loop to the various
processors.

In the ABC model, the directive

#pragma _CRI shared_on <expr>

is provided to designate a loop or loop nest for shared execution.
The iterations of any loop which immediately follows this direc-
tive are parceled out among the available processors, each
processor executing a portion of the loop in parallel with all of
the other processors. The expression

 <expr>

is used to deter-

int a[100 block];

int b[20][100 block];

int *p; /* local pointer to local object */

int (*q)[100 block]; /* local pointer to

distributed object */

void f(int *);

void g(int (*)[100 block]);

p = a; /* ERROR */

q = b; /* OK, q points at row 0 of b, which

is a whole distributed array, and

not a subobject of a larger

distributed array */

q = &a; /* OK */

f(a); /* ERROR, parameter would contain

a pointer to a subobject of a */

g(b); /* OK */

g(&a); /* OK */

p = a + 10; /* ERROR */

*p = *(a+10); /* OK */

Figure 2: Code Examples

mine which processor executes a particular iteration of the loop:
it is exactly that processor where the lvalue expression

<expr>

resides. This expression must designate a distributed array
element, using indices which have the general form

a*i+b

where

a

and

b

 are constants and

i

 is a loop control variable for the
shared loop. None of the loop control variables may be used in
the expression more than once.

There is also an implicit

barrier

at the end of such a loop.
That is, all processors will be held at the loop termination point
until all other processors have finished with the loop execution.

The

shared_on

directive may not be nested; users are respon-
sible to ensure, for example, that a function called from within a
shared loop does not itself contain a

shared_on

 directive. Unde-
fined behavior results if this restriction is violated.

6 Examples

With this much of the ABC programming model specified,
we are in a position to provide a few examples.

6.1 Matrix Multiply

An example for matrix multiply is shown in Figure 3.

Here the columns of the three arrays will be distributed as
evenly as possible across the available processors. The loop nest
will have a portion of its iterations done on each processor: each
processor will execute, for all values of

k

, those parts of the loop
for which

a[i][j]

 resides on the processor. The loop control vari-
ables in the expression must be those for the tight loop nest
following the directive; that is, in this example

i

and

j

are
permitted, but not

k

.

main() {

float a[100][100 block], b[100][100 block],

c[100][100 block];

int i, j, k;

for (i=0; i<100; i++) {

for (j=0; j<100; j++) {

a[i][j] = 0.0;

for (k=0; k<100; k++) {

a[i][j] += b[i][k]*c[k][j];

}

}

}

}

#pragma _CRI shared_on a[i][j]

Figure 3: Matrix Multiply Example

340

CUG 1995 Fall

 Proceedings

Note that the code and the result are the same as would be
achieved in a normal serial matrix multiply, except for the

block

keyword and the

shared_on

 directive.

6.2 Matrix Transpose

In the next example, given in Figure 4, we show how a matrix
transpose function might be written using the ABC model. We
assume that the underlying compiler already provides a vari-
able-length-array (VLA) syntax (as do Cray’s and GNU’s C
compilers). The VLA syntax is an integral part of the ABC
proposal.

Here, with 4 processors and

m

=

n

=100, there would be 10000
accesses of

b

 on the left side of the assignment, and 10000
accesses of

a

 on the right. All of the reads of

a

will be local,
since the

shared_on

expression is

a[j][i]

, but there will be 7500
remote stores to

b

.

Note that:

a) the remote/local accesses in these cases are probably optimal,
or at least a better arrangement is not obvious; and

b) the code will have the same result in a non-parallel environ-
ment, with no change required except to define away the

block

 keyword and ignore the

pragma

 directive

7 Built-in Macros

The ABC model provides several built-in macros for
frequently needed functionality. These are:

•

_N_PES

 which resolves to the number of threads (number of
processors in the MPP case) for which the program was
compiled (or linked or loaded).

•

_MY_PE

 which is the index of the currently executing
thread, a number between 0 and (_N_PES - 1)

void mtranspose(int m, int n, float b[m][n block],

float a[n][m block]) {

int i,j;

for (i=0; i<m; i++) {

for (j=0; j<n; j++) {

b[i][j] = a[j][i];

}

}

}

#pragma _CRI shared_on a[j][i]

Figure 4: Matrix Transpose Example

• _

HOME_PE

(

variable

) which designates the thread (pro-
cessor) where

variable

 resides;

variable

 must be a shared
scalar or a fully dereferenced distributed array element.

8 Intrinsic Functions

While the essential ABC model presented so far can be used
to easily parallelize many sequential C programs, more is
needed. There are also two intrinsic functions which are a part
of ABC.

•

_in_master

() returns TRUE if execution is in a master region,
FALSE otherwise

•

_blksize(arr, dim, proc)

 provides a count of the number of
elements of the distributed array

arr

 in dimension

dim

 which
reside on the designated processor

proc

; the dimension is
numbered from the leftmost dimension which is dimension 1.

9 Additional Directives

The basic work and data distribution algorithm, which
spreads the distributed array and the work to be done evenly
across the available processors, is expected to be useful in most
cases. However, for those instances where more control is
needed, ABC provides the following set of directives:

• #pragma _CRI master

•

#pragma _CRI endmaster[,copy(var[var,...var])]

delimit a
serial region. executed only by processor 0, with all other
threads waiting at the start and end of the master region. The
variables in the copy list must denote private scalar or array
objects, which are copied from processor 0 to all other pro-
cessors when processor 0 reaches the

endmaster

directive.
Objects with type

bit-field

or

char

 are not allowed in the
copy list.

• #

pragma _CRI critical

•

#pragma _CRI endcritical

 define a critical region; only one
processor enters at a time, without regard to order; no syn-
chronization occurs.

•

#pragma _CRI atomic_update

 enforces serial access to the
single statement which follows the directive; this is useful to
prevent potential race conditions.

•

#pragma _CRI shared var[,var,...var]

designates shared
scalar variables or arrays, i.e. variables and arrays which will
reside in the memory of only one processor (processor 0).
Each

var

 must be a simple variable name; see Figure 5 for
some examples.

•

#pragma _CRI symmetric var[,var,...var]

designates local
variables which will be placed at the same local memory off-
set on each processor.

• #pragma _CRI barrier

• #

pragma _CRI nobarrier

 respectively create an explicit
barrier and eliminate an implicit barrier.

CUG 1995 Fall

 Proceedings

341

10

A Further Example

Figure 6 gives an additional example which illustrates the use
of some of the ABC macros and directives. This example is
derived from a similar program in reference [2]. It estimates a
value for

pi

by counting the number of randomly-generated (x,y)
coordinate pairs which fall within a unit circle. The trials are run
independently on all processors, and then the results are summed
in a reduction which is executed by each processor, one at a time,
in indeterminate order.

 In this example the first ABC construct is the

shared

 direc-
tive at line 17, which causes the variable

totalhits

 to exist only
on processor 0. Neither the block keyword nor the shared_on
directive are needed for this very parallel example.

At line 18 the total number of trials is broken up into
trials-per-processor (my_trials). At lines 21-22 the major part of
the work is done. Since this loop is not controlled by any direc-
tives, each processor will execute the entire loop.

At line 24, the atomic_update directive ensures that only one
processor at a time will update the totalhits value.

Finally, at line 27, the directive establishing a master region
ensures that the calculation of pi and the printf are executed only
on processor 0. Since there is an implied barrier at this directive,
this calculation does not begin until all processors are finished
with their loop calculations and have made their contribution to
the totalhits sum.

11 Summary

ABC is a model for C and C++ parallel programming. It is
designed to make use of parallelism simple, and only requires a
single keyword to designate data arrays which are to be
processed in parallel, plus a single directive to designate parallel
loops.

int a[100][100];

int (*b)[100][100];

int c[100 block][100 block];

#pragma _CRI shared a /* OK, a resides on
 processor 0 */

#pragma _CRI shared b /* OK, b is a scalar */

#pragma _CRI shared c /* ERROR, c is a

#pragma _CRI shared c[100 block][100 block]

 distributed array */

 /* ERROR */

#pragma _CRI shared a[100][100] /* ERROR */

Figure 5: Examples of #pragma shared directive

For many cases, the above simple model is sufficient. For
more complicated data distribution and execution control, a set
of macros, intrinsics and user directives is provided.

We believe that the ABC model can form the basis for an effi-
cient C/C++ parallel programming paradigm. We intend to
implement ABC first for the Cray MPP series of machines;
eventually it may also be implemented on other Cray parallel
architectures.

12 References

[1] Carlson, William W., and Jesse M. Draper, “AC for the T3D”, Technical Re-
port SRC-TR-95-141, Supercomputing Research Center Institute for De-
fense Analyses, Bowie, MD, February 1995.

[2] Culler, David E., Andrea Dusseau, Seth C. Goldstein, et. al., “Introduction to
Split-C”, University of California - Berkeley, Berkeley, CA, January 1993.

[3] Gorda, Brent, Karen Warren and Eugene D. Brooks III, “Programming in
PCP”, Lawrence Livermore National Laboratory, June 1992.

1 #include <stdlib.h>
2 #include <math.h>
3 #include <stddef.h>
4 #include <stdio.h>
5
6 int hit() {
7 int const rand_max = INT_MAX;
8 double x = (double)(rand())/(rand_max);
9 double y = (double)(rand())/(rand_max);
10 if ((x*x + y*y) <= 1.0) return (1);
11 else return (0);
12 }
13
14 main() {
15 int trials = 1000000, i, totalhits, my_trials, hits;
16 double pi;
17 #pragma _CRI shared totalhits
18 my_trials=(trials +_N_PES-1- _MY_PE)/_N_PES;
19 srand(_MY_PE*17); /* diffrnt seed on each proc */
20
21 for (i=0; i<my_trials; i++)
22 hits += hit();

24 #pragma _CRI atomic_update
25 totalhits += hits;

23

26
27#pragma _CRI master
28 pi = 4.0*total_hits/trials;
29 printf(“PI estimated at %f from %d trials on %d
30 processors.\n”, pi, trials, _N_PES);
31 #pragma _CRI endmaster
32 }

Figure 6: Pi Calculation Example

342 CUG 1995 Fall Proceedings

[4] MacDonald, Tom, “The Cray Research CRAFT-90 Programming Model,”
Cray User’s Group, March 1995.

[5] Numerical C Extensions Group of X3J11, “Data Parallel C Extensions”,
Technical Report X3J11/94-068, October 1994.

[6] Numrich, Robert W., “F--: A Parallel Fortran Language”, Cray Research,
Eagan, MN, April 1994.

[7] Tichy, Walter F., Michael Philippsen, and Phil Hatcher, “A Critique of the
Programming Language C*”, Communications of the ACM, June 1992.

