

CUG 1995 Fall

 Proceedings

343

Implementation of IEEE Floating-point Arithmetic on the
Cray T90 System

James M. Kiernan

, Sun Microsystems, Inc. and

William J. Harrod

, Cray Research, Inc.

ABSTRACT:

Cray Research will offer a version of the CPU for the Cray T90 system that
implements a subset of the IEEE Standard 754 for floating-point arithmetic. A description of the
64-bit IEEE arithmetic implementation on the Cray T90 system with IEEE floating point hard-
ware architecture is presented. Instruction set differences between this system and machnes
with traditional Cray arithmetic are discussed, as well as the trade-offs necessary to maintain
high performance on a vector supercomputer. Some examples of programming style will be
given that take advantage of vectorized IEEE arithmetic.

1 Introduction

The Cray T90 system with IEEE floating point hardware will
be the first parallel-vector supercomputer (PVP) offered by
Cray Research to support the IEEE Standard 754 for
floating-point arithmetic[1]. The machine’s architecture will
conform to the Cray Research IEEE definition as described in a
previous CUG paper [2]. While the initial version of the Cray
T90 system implements the traditional Cray floating-point arith-
metic, the changes required for the Cray T90 system with IEEE
floating point hardwares T90 system with IEEE floating point
hardware were designed to be confined entirely to the CPU so
that existing Cray T90 systems could be upgraded to a IEEE
system by swapping CPU boards. No changes to memory, SSD,
disk or I/O subsystem are necessary. It is important to note that
the Cray T90 system with IEEE floating point hardware
processor is a redesigned CPU, with many different op-codes
and new instructions, and is not binary compatible with any
previous CRI machines. In particular there is no Cray C90
compatibility mode, nor does the Cray T90 system with IEEE
floating point hardware have dual mode (i.e. Cray & IEEE)
floating-point functional units. Therefore, existing Cray C90 or
T90 system binaries will not execute on a Cray T90 system with
IEEE floating point hardware due to arithmetic and instruction
set differences. As will be seen below, there was more involved
in implementing IEEE arithmetic than merely replacing the
floating-point add/multiply functional units.

It should be noted that the hardware implements 64-bit
(IEEE double) floating-point arithmetic only. Cray T90 system
with IEEE floating point hardware 128-bit floating-point arith-

metic will continue to be done via a software implementation
compatible with the Sun quad format, although this does not
rule out the possibility of full 128-bit arithmetic support in
future hardware. The new 128-bit format is also not compatible
with the previous CRI 128-bit arithmetic, although 64-bit IEEE
format is compatible between the Cray T90 system with IEEE
floating point hardware and Cray T3D/E systems.

In this technical paper we will use the term “Cray T90
system” to denote a Cray T90 system with IEEE floating point
hardware.

2 Basic Rationale

The goal of the Cray T90 system implementation is to maxi-
mize the support of IEEE arithmetic with negligible impact on
performance. In practice, this means that currently existing
Cray application software should port to the Cray T90 system
with minimal effort, and that existing applications which run on
other IEEE machines such as workstations should also port to
the Cray T90 system easily. Minimal effort means that a numer-
ically robust code on an IEEE machine should be equally well
behaved on the Cray T90 system, and that in many cases recom-
piling the source will be sufficient. Assembly language codes
which use floating-point instructions will have to be checked,
and possibly modified, along with older CRI codes that perform
Boolean tricks with, or machine dependent manipulations of,
floating-point numbers.

To achieve minimal performance penalty in conversion to
IEEE arithmetic, one of the goals for the Cray T90 system was
to ensure that the fundamental floating-point operations of addi-
tion and multiplication run in both scalar and vector mode, with
a latency within 1 CP of traditional CRI arithmetic. To main-
tain reasonable performance it was clear that true divisionCopyright © Cray Research Inc. All rights reserved.

344

CUG 1995 Fall

 Proceedings

(rather than reciprocal approximation) would need to be done
via hardware, along with the floating-point comparison opera-
tion. It was also desirable to have hardware support for conver-
sion between floating-point and integers to avoid convoluted
software to handle the IEEE special cases such as overflows,
NaNs, and infinity.

Because vector machines do not have precise, recoverable
traps it was not possible to simply ignore the many IEEE special
cases and fix-up the exceptions after the fact via software, which
is a common method for workstations. That would have slowed
scalar algorithms with trap-handling code, and would still have
been impossible in vector pipelines, which are uninterruptible.
Instead a clean implementation of the IEEE- recommended
“sticky” bits, which record the occurrence of exceptional condi-
tions, was added to the hardware, along with bits to set the
current rounding mode. There are also user-settable bits which
enable or disable interrupts on each possible exception. All
these floating-point status bits are stored in a register which is
also part of the exchange package. The rounding mode bits are
read dynamically as each floating-point instruction issues, and
are not embedded in the instruction op-codes.

3 Summary of CRI IEEE Definition

The CRI IEEE definition includes most of the required
features in the IEEE Standard 754 . The implementation
includes:

• 64-bit binary format for floating-point data (called double in
the IEEE standard; Cray Fortran type REAL; C type double)

• signed zero (

±

 0)

• infinity (

±∞

)

• quiet and signaling NaNs

• the basic arithmetic operations of add/subtract, multiply,
divide, remainder and square root,

• four rounding modes

• 5 IEEE exceptions: overflow, underflow, div-by-zero,
invalid, inexact result

• IEEE comparisons, including comparison involving zeroes,
NaNs and infinity.

There are two areas of nonconformance to the IEEE Standard
754 , namely the lack of support for the 32-bit IEEE data type
and for “denormal” numbers. The absence of these two features
on the Cray T90 system does not preclude support on future
systems.

Software support is provided for 32-bit (IEEE single) data
for reading and writing, and conversion to and from 64-bit
(IEEE double) format, via the I/O library. This allows 32-bit
data to be shared with workstations, but all Cray T90 system
arithmetic operations (on 32-bit imported data) will be 64-bit
only. 128-bit data (Cray Fortran type DOUBLE PRECISION;C
type long double) is supported via a software library only, and
uses the same format as Sun quad precision. Denormal or

subnormal arithmetic (sometimes called gradual underflow) is
not supported for performance and architectural reasons, since
the lack of precise traps prevents handling denormals via trap-
ping software, and the limitations of space in the arithmetic
functional units prevents full denormal support at present.
Floating-point functional units treat denormals as zero on input
and flush would-be denormals to zero on output.

4 Review of the Cray IEEE Implementation

4.1 Basic Arithmetic

The basic arithmetic operations for floating-point include
add, subtract, multiply, and divide, with instructions for the
usual combinations of scalar<op>scalar, scalar<op>vector, and
vector<op>vector operations (Table 1)

Note that the “/F” instruction is a true divide operation, and
the older CRI reciprocal (Newton iteration) instruction sequence
is no longer supported. Also the older multiply variations such
as half precision multiply (i.e the “*H”) and truncated vs.
rounded multiply (i.e. “*R”) are gone, along with the scalar
instructions which performed load-immediates of certain special
values of floating point constants (Si .6; Si 1.; Si .4 etc.).

4.2 Additional Operations

Some other frequently used operations (Table 2) which also
have new hardware instructions include square root, real to
integer conversion, real to rounded integer, and integer to real.
The INT instruction truncates a real to an integer as specified by
the Fortran INT function, whereas the RINT instruction will
round to an integer according to the current IEEE rounding mode
in effect. The real to integer conversions support full 64-bit
signed integers (2’s complement). The SQRT instruction uses
the divide functional unit, and returns the result rounded as spec-
ified by IEEE Standard 754.

Table 1. Elementary Floating-Point Instructions

Operation Instruction

Addition Si Sj+FSk

Vi Sj+FVk

Vi Vj+FVk

Subtraction Si Sj-FSk

Vi Sj-FVk

Vi Vj-FVk

Multiplication Si Sj*FSk

Vi Sj*FVk

Vi Vj*FVk

Division Si Sk/FSj

Vi Vk/FSj

Vi Vk/FVj

CUG 1995 Fall

 Proceedings

345

4.3 Comparison

Because of requirements of the IEEE standard specifications,
it was necessary to have floating-point compare (Table 3) done
via a hardware instruction. All the comparisons used in standard
Fortran, plus an unordered compare, are implemented directly in
hardware.

By implementing the comparison in this manner, it was
possible to avoid having to change or create any additional jump
instructions or jump logic (such as “jump on floating unequal”,
etc.) This keeps the current jump and instruction buffer logic
unchanged.

For scalar compare, such as

Table 2. Extended floating-point instructions.

Operation Instruction

square root Si SQRT,Sj

Vi SQRT,Vj

float to int Si INT,Sj

Vi INT,Vj

float to rounded int Si RINT,Sj

Vi RINT,Vj

int to float Si FLT,Sj

Vi FLT,Vj

Table 3. Floating Point Compare Instructions

Operation Instruction

Equal Si Sj,EQ,Sk

VM Sj,EQ,Vk

VM Vj,EQ,Vk

Not equal Si Sj,NE,Sk

VM Sj,NE,Vk

VM Vj,NE,Vk

Greater than Si Sj,GT,Sk

VM Sj,GT,Vk

VM Vj,GT,Vk

Greater than or equal Si Sj,GE,Sk

VM Sj,GE,Vk

VM Vj,GE,Vk

Less than Si Sj,LT,Sk

VM Sj,LT,Vk

VM Vj,LT,Vk

Less than or equal Si Sj,LE,Sk

VM Sj,LE,Vk

VM Vj,LE,Vk

Unordered Si Sj,UN,Sk

VM Sj,UN,Vk

VM Vj,UN,Vk

S0 Sj,EQ,Sk
JSZ LABEL1 ;go here if compare is false
JSN LABEL2 ;go here if compare is true

if the comparison is TRUE, then the result register Si is filled
with 1 bits, otherwise Si is all 0 bits. The Si register can then be
used as a bit mask, or in a jump on zero/non-zero, or a jump on
plus/minus (i.e the sign bit). For vector comparisons, such as

VM Vj,EQ,Vk

a bit within VM is set to 1 if the compare involving the
corresponding pair of elements of Vj and Vk is TRUE, otherwise
the VM bit is set to 0.

The

unordered

 comparison is TRUE (1) if either operand (or
both) is a NaN, otherwise it returns FALSE (0). Under the rules
of IEEE, a NaN never equals anything, including itself. The
unordered compare operation is not defined in standard Fortran
or C language syntax. In CAL, to test whether a number X is a
NaN, it may be “compared to itself” via the EQ or UN compari-
sons. This can be used to implement a fast (and vectorizable)
isnan(x) function, which returns TRUE if the argument x is a
NaN, and FALSE otherwise. While X could also be compared
to itself using Fortran or C, an optimizing compiler would prob-
ably restructure such statement blocks as:

IF(X .EQ. X) THEN

 (code for normal X here)

ELSE

(code if X=NaN)

ENDIF

and just generate code for the case where X=X. This style of
coding is not recommended due to portability problems among
different vendors and different compiling systems, some of
which may allow expressions like X .EQ. X, while others
optimize it away.

The recommended implementation is as follows:

IF(isnan(X)) THEN

 (code if X=NaN)

ELSE

(code for normal X here)

ENDIF

The following is a coding example (in pseudo-CAL) of how
a Fortran MAX function might be implemented (without jumps)
using the new compare instructions.

(s1 == max(y,z))

s2 y ;value for y
s3 z ;value for z
s1 s3
s7 s2,gt,s3 ;all 1’s if y > z
s1 s2!s1&s7 ;max (scalar merge)

A vectorized version of the same function is similar:

(v1 == max(y,z))

v2 y ;value for y

v3 z ;value for z

346

CUG 1995 Fall

 Proceedings

vm v2,gt,v3 ;VM=1 where y(i) > z(i)

v1 v2!v3&vm ;max (vector merge)

4.4 Sqrt/Divide Functional Units

The divide functional unit is internally segmented into
multiple div/sqrt subunits, each of which computes a quotient or
square root from its input operand(s). For vector and scalar
pipelined operations, the next pair of operands are sent to the
next available internal subunit, so that, when viewed from the
“outside”, the entire divide/sqrt operation appears to be pipe-
lined (Figure 1).

The figure is somewhat simplified as the actual number of
subunits may not be 4; also, the Cray T90 system is a dual pipe-
line machine so all the functional units are doubled in odd/even
pairs, with the 128 elements of each vector register being
read/written in odd/even pairs to dual functional units. The
result for the Cray T90 system is that a vector add, subtract or
multiply will deliver 2 vector results every CP (plus start-up
latency), while the divide or square root will deliver 1 result
every 2 CP’s (plus start-up latency).

Other, non-elementary floating-point operations which are
not implemented directly in hardware include binary to decimal
conversion and 32-bit to 64-bit real conversion. These are both
handled through library support. The IEEE “remainder” function
can be implemented either via compiler generated in-line code
or by a library function.

5 Floating-point Status Bits

The Cray T90 system implementation also includes support

for detecting IEEE exceptional conditions (such as X/0, ,

0

1

2

3

4

5

6

7

...etc

0

1

2

3

4

5

6

7

...etc

0

1

2

3

4

5

6

7

...etc

Vj, Vk operands Divide/Sqrt Unit Vk result

(sub-units)

Figure 1: Divide/Sqrt Functional Unit

4–

3.0 + NaN,

∞

/

∞

, etc.) and for user control of interrupts on
floating-point exceptions. Some additional support, beyond that
required by IEEE, is also available for assistance in running
older applications. There are 14 bits (Table 4) which define the
user’s “floating-point state”. These bits are available via instruc-
tions that read and write Status Register 0 (SR0) and are auto-
matically saved and restored for each CPU via the hardware
exchange package when jobs or tasks are switched.

5.1 Exceptions: the “sticky bits”

The first set of 6 bits (the “sticky” bits) are initialized to zero
at the beginning of the user’s program, and record the subse-
quent occurrence of exceptional operations. As specified by the
IEEE standard, these bits can only be cleared by the user. A CRI
extension to the standard provides an “exceptional input
operand” bit, which will record the use of

∞

 or NaN. This allows
these numbers, which may have been preset to represent unini-
tialized data (by the loader, for example), or which have been
generated quietly during program execution, to trigger an excep-
tion or interrupt only when they are actually used in a
floating-point operation. A value of 0 for any of the “sticky” bits
means that the corresponding exception has not occurred (since
the bit was last cleared); a value of 1 means the exception has
occurred.

5.2 Interrupt enable/disable

The second set of 6 bits (the interrupt enable/disable bits) are
also initialized to zero at the beginning of the user’s program if
running in the IEEE-conforming mode. Each interrupt bit corre-

Table 4. Floating Point Status Bits

Type Purpose value

Exception Overflow 1

2

or 0

2

Underflow 1

2

or 0

2

Divide by 0 1

2

or 0

2

Invalid 1

2

or 0

2

Inexact 1

2

or 0

2

(CRI) Exc. Input 1

2

or 0

2

Interrupt Overflow 1

2

or 0

2

Underflow 1

2

or 0

2

Divide by 0 1

2

or 0

2

Invalid 1

2

or 0

2

Inexact 1

2

or 0

2

(CRI) Exc. Input 1

2

or 0

2

Rounding To nearest 00

2

To +

∞

01

2

To 0 10

2

To

−∞

11

2

CUG 1995 Fall

 Proceedings

347

sponds to one of the exceptional conditions recorded by the
“sticky” bits above. A value of 0 means that the corresponding
interrupt is disabled. A value of 1 means that if the corre-
sponding exception occurs, an (imprecise) interrupt will be
generated, and can be handled similarly to the way that current
CRI C90 machines work (i.e. via the UNICOS signal mecha-
nism). Note that when an interrupt is disabled, then the program
will run without notifying the user when that exception has
occurred, unless the user checks the status of the corresponding
“sticky” bit.

The exception and interrupt bits should not be read or written
by the user while the floating-point functional units are busy.
Doing so may cause an exception to be “missed”. A special
instruction, Complete Floating Point (CFP), was added to the
Cray T90 system to force an instruction hold-issue until all
current floating-point operations are beyond the point at which
exceptions would occur.

5.3 Rounding mode control

The final set of 2 bits determine the current IEEE rounding
mode for all floating-point operations. The combination of 2
bits gives the 4 possible IEEE modes, with round-to-nearest
(00

2

) being the default. These bits are sensed at the start of each

floating-point instruction, and “remembered” for the duration of
that operation. Unlike the exception/interrupt bits above,
changes to the rounding mode bits (SR0) can be made immedi-
ately after a floating-point operation has begun, and the new
rounding mode takes effect at the next floating-point instruc-
tion. Currently executing operations continue unchanged.

5.4 User Control

A program running in the IEEE Default mode begins
executing with all the above 14 bits cleared to zero. But the user
can override these defaults, and also sense, clear and set the bits
during program execution. Instructions are provided which read
and write these bits (Table 5).

Table 5. Read/write Floating-Point Status.

Operation Instruction

read status register Si SR0

write status register SR0 Si

enable invalid interrupts EFI INV

disable invalid interrupts DFI INV

enable div-by-0 interrupts EFI DIV

disable div-by-0 interrupts DFI DIV

enable overflow interrupts EFI OVF

disable overflow interrupts DFI OVF

enable underflow interrupts EFI UNF

disable underflow interrupts DFI UNF

enable inexact interrupts EFI INX

disable inexact interrupts DFI INX

enable except. input interrupts EFI INP

disable except. input interrupts DFI INP

The first two instructions read or write the entire status
register SR0 using an S register, and take 1 CP. Any bit or group
of bits can then be manipulated using Boolean mask operations
on Si. These instructions can also be used to save the
floating-point state upon entry to a subroutine, for example, and
then restore the state on return. The next group of 12 instructions
allow the interrupt enable bits to be set individually with one
operation. The next 4 instructions set the rounding mode bits
directly, without the need to read SR0 or wait for on-going
floating-point operations to complete. These instructions take 1
CP to issue and can be used for fast switching of rounding
modes, for example, in interval arithmetic. The final SETRM
instruction allows the 2 rounding mode bits to be set directly
from an S register, without the need to read SR0 and mask the
rounding bits in.

Caution should be taken when manipulating SR0 directly
since its 64 bits contains other information affecting the user job
in addition to the 14 floating-point status bits. There will be a
higher level library interface to the mode bits to improve code
portability; however users should note that the precise mecha-
nism or language binding for manipulation of IEEE exception,
interrupt, and rounding modes was never a part of the IEEE
Standard 754, and thus varies among different computer
vendors.

6 Performance Issues

The Cray T90 system with IEEE floating point hardware was
designed with supercomputer-level performance in mind. Since
the basic IEEE arithmetic operations (+ – * /

√

) and comparison
vectorize, most existing Cray applications should continue to
vectorize without source code changes. Keeping the
floating-point status bits in a register (i.e. dynamic control rather
than within the op-codes) allows external routines such as
LIBSCI, LAPACK, IMSL, and NAG libraries to be built once,
and possibly called with different modes to investigate issues of
numerical stability. For example, if a numerical instability is
suspected in an application, a matrix manipulation subroutine
could be called multiple times, but with different rounding
modes in effect, and the results checked for unusually large
numerical differences.

6.1 User control of floating-point state

All the IEEE mode bits are directly accessible by the user
without any intervention (and overhead) by the operating
system. By running with the interrupts for division by zero,
overflow, and invalid enabled, existing Cray codes can continue

set round to nearest mode RNM

set round to zero mode RZM

set round up (to +

∞

 mode RUM

set round down (to -

∞

 mode RDM

set round mode from Si SETRM Si

Table 5. Read/write Floating-Point Status.

Operation Instruction

348

CUG 1995 Fall

 Proceedings

to exhibit the expected behavior when errors such as division by
zero occur. However, routines can also be written that execute
with interrupts disabled (IEEE “default mode”), and exceptions
can be discovered by periodic (and relatively cheap) inspection
of the “sticky” bits, no precise, recoverable (and expensive,
from a performance standpoint) traps are necessary. As
compiler and library support are added for detecting some
common IEEE special cases, it will also be possible to perform
some limited manipulation of NaN and

∞

while still achieving
high vector performance. Depending on the algorithm involved,
it is possible for applications to run nonstop, while generating,
sensing, and replacing NaNs and infinities with more benign
values on-the-fly. This section includes some simple examples
and suggestions for maintaining high performance while using
some features of IEEE arithmetic.

6.2 Functional Units and Chaining

One of the easiest ways to take advantage of the Cray T90
system vector capabilities is to maximize the use of chaining
between multiple independent functional units. Table 6 shows
which floating-point operations occur in each functional unit.

Note that the other vector units (Integer, Boolean, Pop Count,
etc.) still exist and are unchanged on the Cray T90 system with
IEEE floating point hardware. The divide functional unit can be
exploited by the compiler for better code scheduling, since the
unit uses at most 3 vector registers, and can run in parallel with,
or chain into, the add and multiply units. This contrasts with the
older reciprocal iteration sequence on Cray machines, in which
most of the Newton iteration used the multiply unit and addi-
tional vector registers.

Another way to exploit the divide unit is to compute X/Y as
X*(1/Y) when numerical accuracy allows it (Figure 2). In the
rational polynomial evaluation, assume that replacing the true
quotient with the reciprocal is acceptable. The code sequence is
typical of elementary function routines such as sin(x). Each step
of polynomial evaluation represents one vector “chime”, i.e. a
chain of pipelined vector operations. We begin by computing

Table 6. Floating Point Functional Units

Unit Operation

Add X+Y

X-Y

FLT

INT

RINT

COMPARE

Multiply X*Y

I*J (64x64-bit upper result)

I*J (64x64-bit lower result)

Divide X/Y

X

the “denominator” polynomial Q(x). In chime 5, the reciprocal
is begun in the divide unit, while the add and multiply units are
still free to continue with the “numerator” polynomial P(x). The
result 1/Q(x) is ready by the time P(x) is finished, and chains
into the final result f(x) in chime 10. Note that while the divide
may have a slower start-up latency time than either add or
multiply, and takes 4 chimes to complete, instruction scheduling
in this case allow the divide (reciprocal) to be “free”. This code
sequence would consume several more chimes if we computed
P(x), then Q(x), and then P/Q. It also would be slower if we used
the older Cray reciprocal iteration sequence, which needs the
multiply unit to complete the Newton iteration, adding several
more chimes to the process.

6.3 Special cases: Infinity and NaN

One of the problems associated with IEEE arithmetic, from a
performance aspect, is dealing with the special cases or excep-
tions such as infinity and NaNs. There is no universal method of
handling these, as the actions to be taken depend on the algo-
rithm. However on the Cray T90 system there are several ways
of dealing with these end-cases that still allow vectorization to
occur. There are at least 3 techniques which can be used to deal
with conditional If-Then-Else constructs within loops,
depending on the complexity of the algorithm involved.

6.3.1 Simple If-Then-Else Blocks

Consider the case for simple conditions within loops such as:

loop
if (condition) then

(

block-1

)
else

(

block-2

)
endif

endloop

Rational Polynomial

Let f(x) = x + P(x)/Q(x) computed as

f(x) = x + P(x)*[1/Q(x)]

Chime

Q(x) = q4*x + q3 1

*x + q2 2

*x + q1 3

*x + q0 4

P(x) = p5*x + p4 1/Q(x) 5

*x + p3 6

*x + p2 7

*x + p1 8

*x + p0 9

f(x) = x + P*(1/Q) 10

Figure 2: Overlapped divide, add/multiply

CUG 1995 Fall

 Proceedings

349

where block-1 and block-2 are both likely to be executed, and
both are equally expensive in terms of time. Because vector
operations are relatively cheap the first method for dealing with
this (whether the condition is related to a special case of IEEE
arithmetic or not) is just to store the result of the conditional test
in the VM register, execute both blocks for all the data, and then
do a vector merge at the “endif” statement to select the correct
results from each block. This also assumes that the condition
expression is vectorizable.

Here are some examples using this approach to do vectoriz-
able replacements of

∞

and NaNs in the above type of condi-
tional code blocks. There is compiler/library support for the
IEEE recommended functions like isnan(x) and isinf(x). In
Fortran these are LOGICAL functions, returning true if their
respective arguments are NaN or

±

∞

, and otherwise false. By
generating code that uses the vector compare instructions,
in-line expansion of these functions vectorize.

Example 1

In the following example, suppose that an algorithm can
generate

∞

on some occasions, but that it could be replaced by

some other, very large number (such as 10

100

) without affecting
the numerical results of the application. Since the range of IEEE

double values (100

±

308

) is more restricted than the older Cray

arithmetic (10

±

2465

) this situation is not unrealistic for some
existing Cray applications. The Fortran vector loop below could
be used to filter out the spurious

∞

’s and replace them with a
more well-behaved value.

do i=1,n
temp = y(i)**4 !this may overflow
if(isinf(temp) then

x(i) = 10

100

else
x(i) = temp

endif
enddo

The reason that forcing a value of 10100 is safer than keeping
the ∞ is that if the x(i) is subsequently involved in any subtrac-

tions, 10100 − 10100 = 0, whereas ∞ − ∞ = NaN under IEEE rules.
Any generated NaNs can spread throughout the program like the
plague. Since the above case only involved ∞, and we know that
compares involving ∞ work correctly in the hardware, we could
also have used the Fortran MIN function.

do i=1, n
x(i) = y(i)**4 !this may overflow

x(i) = min(x(i) , 10 100)
continue

Example 2
Another example involves a user-written atan2(y,x) function.

Suppose that for performance reasons a user needs a less precise
(but faster) atan2(y,x) function than the one supplied with the
math library. The following pseudo-Fortran code fragment will
handle the special cases of atan2(y,0), and atan2(0,0) (and some

others) on the fly. Assume that atan2(0,0) = 0 is acceptable, and
use the Cray-specific vector-merge intrinsics to replace y/x in
cases such as y/0, y/x = overflow, 0/0, x = NaN, y = NaN, etc.
The use of such functions reduces program portability, but may
generate more efficient loop code, especially if we can avoid
nested if-then-else statements, which are more difficult to
vectorize.

real x(n),y(n),z(n)
logical inf,nan

c
c compute z = atan2(y,x)
c by some (vectorizable) user method
c
 do i = 1,n

arg = y(i)/x(i)
inf = isinf(arg)
nan = isnan(arg)
safearg = cvmgt(1.0,arg, inf.or.nan)
answer = atan_user(safearg)

c
c handle case along y-axis
c

answer = cvmgt(,answer,inf)

c
c handle case at origin
c

z(i) = cvmgt(0.0,answer,nan)
continue

Note the cvmgt(arg1,arg2,arg3) function returns its first argu-
ment if the third argument is true, otherwise it returns the second
argument. The final two uses of cvmgt could be merged into one,
and overlapped with the computation in the user function
atan_user, thus saving a chime, but that would tend to clutter up
the example.

6.3.2 More complex if-then-else structures

Now consider the case for more complicated situations
involving conditional blocks within loops

loop
if(condition) then

(block-1)
else

(block-2)
endif

endloop

where perhaps both blocks are very expensive to compute, or
where the condition tests for a rare occurrence such that block-1
almost always is executed, but block-2 practically never. We
could use the gather/scatter method, but that requires several
trips to memory in order to separate the elements required for
block-1 and block-2. Also it might be that in this case simple
substitution of normal numbers in place of NaNs or ∞ is not

π 2⁄

350 CUG 1995 Fall Proceedings

sufficient. Perhaps block-2 is slow, expensive, or does not
vectorize (that situation might require the use of CAL.

Example 3

The Cray T90 system with IEEE floating point vector
compress and expand instructions (Figs. 3 & 4) may be used to
advantage, and to keep the performance high for the most
common (i.e. non-exceptional) cases. The vector-to-vector
compress/expand instructions are new to the Cray T90 system
with IEEE floating point, but are not limited to uses involving
IEEE arithmetic.

The vector compress (Figure 3) instruction selects those
elements of the input vector (Vj) whose corresponding bit in VM
is set and places them into the result vector (Vi).

The vector expand instruction (Figure 4) uses successive
elements of the input vector, and places them in the position in
the result vector (Vi) whose corresponding bit in VM is set.
Elements in Vi whose VM bit is 0 are not modified (the XXXX
elements in Figure 4). The count for both compress and expand
is determined by the number of bits set in VM, not by the vector
length in VL.

Suppose a Fortran structure looks like

loop
if(x(i) .lt. maxarg .and.

* x(i) .gt. minarg) then
(normal case)
y = user_func(x(i))

else
(very rare case)
(could be complicated)

2.5

0.8

8.0

20.1

7.7

2.5

4.1

0.8

8.0

-3.5

20.1

0.0

9.4

7.7

Vector Compress: Vi Vj,[VM]

VM = 101101001

Vi result Vj input
endif

endloop

Note the construction of the comparison tests such that the
normal x(i) fall though, but x(i) which are outside the desired
range of (minarg,maxarg), including ∞ and NaN, will not. Also,
the normal (most common) case is coded first, since falling
through a jump is faster than taking it. The following
pseudo-CAL version of this example could vectorize for the
normal case

If (normal-condition)
Y(i) ←←←← X(i)compress normal X
shorten VL, if needed use popcnt (VM)
compute W(i) ←←←← func(Y(i))
Z(i) ←←←← W(i)!expand
restore original VL

Else

complement VM
Y’(i) ←←←← X(i) !compress abnormal X
shorten VL
compute W’(i) ←←←← func(Y’(i))
Z’(i) ←←←← W’(i)!expand
restore original VL
restore original VM
(vector merge results together)
Z(i) ←←←← Z(i)!Z’(i) & VM

Endif

6.4 Difficult special cases
The last method of handling IEEE exceptions at reasonable

performance occurs in cases where the occurrence of overflows,
etc. either cannot be cheaply anticipated and tested for in

2.5

0.8

8.0

20.1

7.7

2.5

0.8

8.0

20.1

7.7

Vector ExpandVi, [VM] Vj
VM = 101101001

Vi input Vj result

Figure 3: Cray T90 system vector compress using vector mask.

Figure 4: Triton vector expand using vector mask.

CUG 1995 Fall Proceedings 351

advance, or where the handling of these conditions cannot be
done within the confines of the DO LOOP structure. Such cases
could require re-scaling the data (to prevent an overflow), or
printing error messages and prompting an interactive user for
assistance, or branching back to a previous program checkpoint
and restarting a portion of the application using a different or
more robust algorithm. One possible approach to these situa-
tions is given in Figure 5.

Note we are still assuming that exceptions are “exceptional”,
that is, relatively rare, and we wish to avoid penalizing the algo-
rithm with overly cautious amounts of testing for conditions that
almost never happen. The approach here is to divide the most
intensive portion of the code into moderately sized pieces, and
execute a “quick & dirty” algorithm that presumably will
succeed most of the time. Then, periodically, outside of the
innermost loop (so it will still vectorize), test the IEEE exception
bits to see if any overflows, div-by-zero, invalid operations etc.
have occurred. If they have, then the program can branch off
somewhere and attempt to handle them, and possibly resume the
computation at some point. In the worst case, the user could at
least exit the program gracefully. If checking the IEEE status
bits indicates no exceptions have occurred, then the next pass
through the inner, vector loop can proceed. Since reading SR0
is fast, comparable in overhead to reading the real-time clock,
the latter case represents the “fast path” through the code.

Start Outer Loop

Clear Sticky (exception) Bits

Inner Loop (vectorized)

Check IEEE Sticky Bits

OK? Fatal?

Fix it

Resume
Outer
Lopp

Done Exit

No

Yes

No

Yes

Figure 5: Special Cases

Because the Cray architecture can perform at high computa-
tional rates even for relatively short vector lengths, a loop of say,

104 elements could be broken into 10 groups of 1000, and still
run at almost the original speed, provided that no exceptions
occur, which is to say, most of the time. The exact method of
restructuring the code is beyond the scope of this paper as it
involves trade-offs between the size and complexity of the inner-
most loop, the expected frequency of exceptional occurrences,
and the expense of “backtracking” in the code to determine the
reason for the exception(s) that occurred.

A specific use of the method of Figure 5 that occurs in prac-
tice involves the standard library function A = CABS(Z), the
complex absolute value, where Z = X + iY. The fastest method
to evaluate this,

a =

will work safely most of the time, but gets into trouble whenever
the intermediate quantities X2, Y2 overflow or underflow.
While these cases are rare, the math library must anticipate them,
and add some safe scaling for all arguments, thus slowing down
the algorithm for everyone. By taking advantage of the IEEE
sticky bits, we can speed up the results for the normal cases, and
only perform the extra scaling when exceptions actually occur.
Thus we can code as

(clear sticky bit for overflow)
do i=1,n

ai = sqrt(x i **2 + y i **2)

enddo
{wait for floating-point quiet (CFP) }
if (overflow bit set) then

do i=1,n
a = max (x i , y i)

b = min (x i , y i)

ai = a*sqrt(1. + (b/a)**2)

enddo
endif

While the example is in pseudo-Fortran, in an actual CAL
math library routine the “loop length” is always ≤ 128, so little
extra work is required if the overflow occurs. It would not be
worth the trouble to search a 128 word array just to find the

particular or that was causing the problem. In practice, the

first loop will work almost all the time, and the second will prac-
tically never be needed. The version of CABS traditionally used
by Cray essentially uses the method of the second loop all the
time. (This example ignores underflows and NaNs for
simplicity.)

In summary, the Cray T90 series with IEEE floating point
hardware architecture has various means of handling conditions
within vector loops, including vector merge, gather/scatter, and
vector compress/expand. The worst cases can be handled by

X
2

Y
2+

xi yi

352 CUG 1995 Fall Proceedings

restructuring the code and inspecting the exception bits occa-
sionally. The presence of IEEE special cases need not burden a
code excessively as long as they occur rarely, or can be handled
via vector merge substitutions.

7 Conclusion

The Cray T90 system with IEEE floating point hardware
provides a virtually complete implementation of IEEE standard
floating-point arithmetic in a parallel-vector architecture. With
appropriate compiler and library support, the most useful
features of IEEE arithmetic are accessible to the user at minimal
performance penalty. The currently known anomalies of Cray
arithmetic are eliminated, while maintaining supercom-
puter-level scalar, vector, and parallel performance. Applica-

tions which currently run on Cray PVP vector machines should
continue to vectorize well, and will benefit from the better
behavior of IEEE arithmetic, such as improved rounding of
results. Newer codes which wish to exploit the additional
features of IEEE arithmetic such as exception detection and
manipulation of ∞ and NaN, may do so. As the examples given
here illustrate, in many cases these features of IEEE can be used
with little performance penalty.

References

[1] Kiernan, J., 1992. Cray Research and IEEE Floating-point Arithmetic. CUG
Spring Proceedings, Berlin,53-58.

[2] IEEE 1987. IEEE Standard 754-1985 for binary floating-point arithmetic.
IEEE Reprinted in Sig-Plan 22,2,9-25.

