

CUG 1995 Spring

 Proceedings

149

Cluster Scheduling With NQX

Chris Brady

, Cray Research, Inc., Boulder, Colorado, and

Dennis Colarelli

, National Center for Atmospheric Research,
Boulder, Colorado

ABSTRACT:

Clustering computers has become a popular distributed computing paradigm in
recent years. Clusters provide attractive price/performance, scalability and reliability. This is
achieved at a cost of increased scheduling complexity. At the National Center for Atmospheric
Research (NCAR) we have clustered four Cray EL series machines to serve two groups of users.
In this paper we discuss some of the difficulties encountered in clustering and how many of these
issues were addressed with CRI’s NQX. Some of the topics considered are: distributed job
scheduling, transfer and location policies, memory and CPU scheduling, fault tolerance and
different machine capabilities.

Introduction

Clusters of computers can provide an effective means for
providing supercomputing service to a diverse community.
Clusters can provide attractive price/performance, are reason-
ably easy to scale and provide a measure of reliability. Compu-
tationally they provide a means for a central view of the system,
distributed resource access and management, access to special-
ized resources and distributed computing.

At the National Center for Atmospheric Research we have
clustered four Cray EL series machines. The cluster consists of
three EL 98's (two with two gigabytes of memory and one with
one gigabyte of memory), and an EL 92 with 512 megabytes of
memory. The primary objectives for the cluster are to provide
a comfortable development and production environment for
work which does not require the computational power of
NCAR's Y-MPs. The development environment emphasizes
quick response, fast turnaround and large memory for both
interactive and batch work. The production environment
provides similar goals, with less emphasis on turnaround. Fast
turnaround is achieved by scheduling and load sharing.

1

As development test work typically requires a relatively
small amount of CPU time, short running jobs are given prefer-
ence to longer running jobs. Load sharing transparently distrib-
utes work submitted to the cluster to machines most capable of
delivering service.

1. We use the term “load sharing” rather than “load balancing”. In the context
of this paper, load sharing’s goal is to achieve the best possible performance by
keeping all processors busy. Load balancing’s goal is to attempt to balance
queue lengths at each machine, which is not necessary to keep all processors
busy. [1]

Large memory is provided to user jobs by setting user
memory limits for batch work during prime and non-prime
hours. Individual interactive session limits can be increased
from a fixed size memory pool reserved for interactive work.
The interactive memory pool is reserved during prime time and
reverts to batch during non-prime hours.

The remainder of this paper describes scheduling methods
used on the Cray EL cluster at NCAR. Section 1 briefly
describes CRI’s NQE. Section 2 gives a functional description
of the cluster. Section 3 discusses the cluster scheduling
strategy used at NCAR. Finally, section 4 gives a summary of
our conclusions and areas for future research.

1 NQE

The Network Queuing Environment (NQE) consists of four
components - NQS (Network Queuing System), NQC
(Network Queuing Client), NLB (Network Load Balancer) and
FTA (File Transfer Agent) [9, 10]. NQS and FTA are part of
the UNICOS package and, beginning with the 8.0.3 release, the
NQX product will provide NQE capabilities on UNICOS. The
NQE/NQX products provide a mechanism for distributing work
across a network of heterogeneous systems.

NQS has become an industry standard batch queuing system
and has been part of the UNICOS system for some time. NQS
provides for unattended execution of batch requests. NQS
offers the ability to run jobs locally, as well as submit and route
jobs to remote systems on the network.

NQC provides a client interface to NQS that supports the
submission and control of work without the need to run full
NQS. The NQC interface has minimal overhead and adminis-
trative cost.Copyright

 Cray Research Inc. All Rights Reserved

150

CUG 1995 Spring

 Proceedings

NLB provides status and control of work scheduling within
a batch complex (a network of NQE clients and servers) . Sites
can use the NLB to provide policy based scheduling of work
within the complex. Collectors periodically collect current
workload data from systems in a batch complex. The data from
the collectors is sent to one or more NLB servers. The NLB
uses this workload data to provide NQS and NQC with informa-
tion for routing work to the most appropriate system based on
local scheduling policies.

FTA allows reliable (asynchronous and synchronous) unat-
tended file transfer across the network by use of ftp.

2 The NCAR EL Cluster

The four machines which comprise the NCAR EL Cluster
are in some ways all different. While each machine is a Cray
EL, they differ either by number of CPUs, memory size, avail-
able software or workload objective. This section provides a
general description of the cluster and the scheduling strategies.

The queue structure is, by design, quite simple. All jobs are
submitted to a single central queue which resides on one of the
machines in the cluster. Jobs wait in this queue until they are
dispatched to one of the machines in the cluster by the sched-
uler. This strategy keeps queued jobs in a central location until
sufficient resources are available for execution. The result of
this approach is better load sharing under changing conditions,
and allows the scheduling policies to be applied to all queued
work uniformly. Each machine has a single batch queue with a
large run limit. There are no complexes or individual group
limits. Access to batch queues is controlled by the scheduler, so
there is no need for the traditional static controls available in
NQS. Details of the scheduler operation is covered in section 3.

To the extent possible the cluster systems have been config-
ured identically so that other than hardware differences they are
the same. File systems and directory structures are identical.
User and systems programs are replicated on each machine. If
software is licensed to a specific machine, access to it for batch
work is made through the scheduler.

All user home directories exist on one machine and are
exported via NFS to the other machines in the cluster. Distrib-
uting the home directories between all the machines in the
cluster and cross mounting the home directory file systems to all
machines was considered, but rejected for reliability reasons.
For a machine to be operational and accepting user work, it
must have home directories available to the user. In the case
that home directories are distributed between machines, if a
single machine was down, all users with home directories on the
down machine could not run any work, and running work might
fail. With all home directories on one machine, the cluster can
continue to function successfully if any of the other machines
are down. If the machine with the home directories is down, all
other active machines in the cluster are brought down.

Each machine has a large, publicly accessible file system
(usr/tmp) where large user data sets may reside. Ideally this file
system would be shared by each node of the cluster so that disk

resources could be gathered into a large single pool. In addi-
tion, since user’s usually don’t know which machine will run
their job, it would avoid any confusion as to the location of job
output datafiles. At the time the cluster was configured, the
only method to accomplish a shared file system was NFS.
Unfortunately NFS’s performance was too low for the heavy
I/O requirements which are characteristic of the jobs that run on
the cluster. Consequently the decision was made to use separate
/usr/tmp file systems on each of the cluster machines.

Users are allowed to interactively log in to any node in the
cluster. Interactive memory limits are small to reduce competi-
tion with batch work for memory. One of the machines allows
users to temporarily raise (or lower) their interactive memory
limit. Interactive memory is allocated from a fixed-sized pool
during prime hours. The

ilimit

 command allows users to raise
or lower their memory limit during an interactive session. If the
request cannot be satisfied, the limit is not changed and a
message is displayed indicating the available memory in the
pool. The difficulty in determining available interactive
memory is in predicting future memory use. In general interac-
tive limits are set much higher that current usage and the sum of
the memory limits for interactive users is often much greater
than available interactive memory.

Ilimit

, written by one of the
authors (Brady), takes a new memory limit request and deter-
mines if it can be satisfied from the current interactive memory
pool. Available memory in the interactive pool is determined
by examining the current memory limits for all interactive
sessions. For interactive sessions with memory limits set to the
default login values the actual memory being used is deducted
from the memory pool. The assumption is the average interac-
tive memory use will not change significantly for sessions with
default limits. However, for sessions that have explicitly made
a request for more memory, the assumption is that all of the
requested memory will at some point be used and the entire
memory limit is deducted from the pool.

3 Scheduling

NQX provides the capability for adaptive load sharing [1].
This is a great improvement over the static load sharing avail-
able in NQS [7]. Static policies are unable to adapt to the
varying states of machines in the cluster. With static policies,
work is sometimes sent to busy machines while other machines
remain idle. By using an adaptive location policy, which deter-
mines where a job should be sent, the workload can be spread
evenly throughout the cluster, resulting in better turnaround.

3.1 Functional Description

The NCAR EL cluster conceptually implements a
receiver-initiated control strategy [1, 2, 8]. With receiver-initi-
ated strategies, each machine in the cluster sends out requests
for work based on policies and constraints governing the
machine. The implementation within NQX uses the NLB to
collect data from each machine. The scheduler interrogates the
NLB and decides which machine, if any, should be sent work.

CUG 1995 Spring

 Proceedings

151

In deciding where to send work five factors are considered:
machine availability, machine CPU utilization, available
memory, number of CPUs available and machine specific user
software.

If a machine is not available for general user jobs, no work
is sent. This allows specific machine repair or testing without
bringing the entire cluster down. The only effect on the user is
a decrease in throughput.

CPU utilization is determined by examining the CPU run
queue length. If the run queue length is greater than four times
the number of CPUs, the machine is considered too busy to
handle any more work.

Available memory on a machine must be greater than or
equal to any candidate job requests. Swap rates are such that
swapping is to be avoided, except if necessary when a process
grows. Indeed, swapping is generally unnecessary as fairness
issues normally addressed by swapping are handled by the
scheduler.

If a user requests a number of CPUs, via a site specific
attribute, a machine must have greater than or equal to that
number of CPUs. Thus, multi-tasked jobs that can effectively
use eight CPUs are not mistakenly scheduled on the EL 92,
which has two CPUs.

Similarly, specifying a site attribute for software that is
licensed to specific machines prevents jobs from being
dispatched to machines where the software is unavailable.

If a number of machines meet the above constraints for a
specific job, the machine which is least busy, based on the run
queue length and number of CPUs, is selected to receive the job.

3.2 Scheduling Disciplines

In addition to the constraints given in the previous section
there are three other criteria in selecting jobs for service: fast
turnaround, sufficient memory for large jobs and allocation of
resources between two groups of users.

The development environment goals of the cluster require
fast turnaround to assist programmer productivity. It is easy to
show that the shortest-job-next (SJN) scheduling discipline
gives the optimal turnaround [6]. Unfortunately, SJN can
sometimes result in long running jobs waiting for unacceptably
long times before receiving service. If the average arrival rate
and service time of short running jobs is sufficient to keep the
queue populated, long running jobs may rarely receive service.
A reasonable compromise is the highest-response-ratio-next
(HRN) scheduling discipline [3]. HRN assigns a priority to a
queued job based on its response ratio. The response ratio is the
sum of the requested CPU time and the queue wait time (the
response time) divided by the requested CPU time (the service
time). This ratio is the decrease in processing speed seen by
individual users. Jobs with higher response ratios migrate
toward the front of the queue. The result is that short jobs still
receive preference, however long running jobs can receive
service without unreasonable queue wait times.

As the scheduler only selects jobs that will fit into available
memory, the tendency is to favor smaller jobs over larger jobs.

Observation shows that memory sizes tend to fit an exponential
distribution; that is, there are more small jobs than large jobs.
This also favors small jobs, as when a small job terminates, the
available memory for the next job may only be that released by
the exiting job. The consequence is that large memory jobs may
have unreasonably high queue wait times. To mitigate this
effect, the scheduler only searches the queue to a finite depth,
giving large memory jobs more of an opportunity to be selected.
Experience to date shows this to be an effective strategy for the
workload on the cluster.

Finally the scheduler must be cognizant of CPU time alloca-
tions to various projects. The Fair Share Scheduler (FSS) is
used to track usage vs. project allocations [4, 5, 10]. Queue
position is based on the share priority of the project associated
with individual jobs. In this way, jobs with projects who's CPU
usage history is light relative to it's allocation, and relative to the
usage and allocation of projects of other queued jobs, tend to
migrate to the front of the queue.

4 Conclusions

The approach used in the NCAR EL Cluster has proven
generally successful. Turnaround is reasonably fast, allocation
is fair, and machine load is uniform when an adequate supply of
work is queued. The use of NQX greatly simplified the imple-
mentation and facilitated access to a number of factors used in
scheduling.

Unfortunately, we didn't get it completely right the first time.
While generally this strategy accomplishes the stated goals,
experience has brought some important issues to the surface.

First, users would like a high performance shared file system
for large data sets (/usr/tmp in section 2). Confusion as to loca-
tion of data files and the inability of sequential jobs to read
previous jobs output are the main complaint. Pooling disk
space would also be a more effective use of disk resources.

Second, there is no good mechanism for determining job
location over the long term. Occasionally work would be
dispatched to a machine with low utilization in lieu of a
machine that was very busy, the busy machine's work would
complete and go idle. Looking at the expected running time of
work on a machine, coupled with the utilization may give better
overall results.

Third, the facility to allow interactive users to change
memory limits during a session works well but has three prob-
lems. First, the facility is allowed only during prime hours. It
was discovered, and should have been no surprise, that many
users work interactively during non-prime hours and need the
facility during those times. Second, users occasionally forget
that they've increased their limit after they've completed what-
ever required the limit to be raised. Other users can then some-
times be denied their memory request, and must wait, or call the
user, or give up. Third, the fact that the memory pool size is
fixed is an artificial constraint. Sometimes, when the interac-
tive memory pool is exhausted memory is still available in the
batch partition.

152

CUG 1995 Spring

 Proceedings

Finally, at present we have no mechanism to manage
resources for distributed work. Should a job wish to span
machines in the cluster, there is presently no way under the
current strategy to effectively schedule the work and preserve
the resource management goals.

Each of these areas is currently under investigation. In addi-
tion, investigation is under way on the potential to cluster more
machines with significantly different hardware and software
configurations.

Acknowledgments

We would like to thank Dan Ferber and his group at CRI for
all their help with NQX and feedback on our approach. We
would particularly like to thank Jeff Doak who wrote major
portions of the scheduler. And, finally, thanks to Bryan Hardy
for his helpful comments on this paper.

References

1. Derek L. Eager, Edward D. Lazowska, and John Zahorjan,

Adaptive
Load Sharing in Homogeneous Distributed Systems

, IEEE Transactions
on Software Engineering, Vol. SE-12, No. 5, May 1986, pp. 662-675.

2. Derek L. Eager, Edward D. Lazowska, and John Zahorjan,

A Compari-
son of Receiver-Initiated and Sender-Initiated Adaptive Load Sharing

,
Performance Evaluation, North-Holland, No. 6, 1986, pp. 53-68.

3. Per Brinch Hansen ,

Operating System Principles

, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1973.

4. G. J. Henry,

The Fair Share Scheduler

, AT&T Bell Laboratories Tech-
nical Journal, Vol. 63, No. 8, October 1984, pp. 1845-1857.

5. J. Kay and P. Lauder, A

 Fair Share Scheduler

, Communications of the
ACM, January 1988, Vol. 31, No. 1, pp. 44-55.

6. Gary J. Nutt,

Centralized and Distributed Operating Systems

, Prentice
Hall, Englewood Cliffs, New Jersey, 1992.

7. Asser N. Tantawi and Don Towsley,

Optimal Static Load Balancing in
Distributed Computer Systems

, JACM, Vol. 32, No. 2, April 1985, pp
445-465.

8.

UNICOS System Administration

, Volume 2, SG-2113 8.0.

9.

Introduction to NQE

, IN-2153.

10.

NQE Administration

, SG-2150.

