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ABSTRACT: 

 

The area of performance improvement, a primary focus of Cray Research, has had
many changes in the last two years. Some basic tuning techniques and assumptions have become
obsolete. UNICOS fine-grained multithreading, system buffer cache improvements, primary/sec-
ondary file systems, ldcache improvements, and SDS packing all have significance beyond their
basic functions. This paper discusses the potential impact of these features from a global system
performance and tuning perspective. 

 

1 Introduction 

 

System tuning is the process of applying the available
resources of a computer system to the problems presented for
solution.

One of the great strengths of UNICOS is the number and
quality of the mechanisms available to an administrator or user
for this task.

For example, users can improve the efficiency of applica-
tions by using main memory directly as workspace. If memory
is considered too precious, it can be used to improve I/O perfor-
mance. Choices include use as buffer space, as library cache, or
as memory-resident file space. Administrators have two types
of cache available. System buffer (kernel) cache can be added
to be used to advantage by the whole system. Memory can also
be configured as a memory-resident file system or as
memory-ldcache on a disk file system to improve performance.

The SSD has similar flexibility and power. SSD space can be
used as workspace for very large arrays (auxiliary arrays), as
direct file space, as file-specific cache, as a file system, as an
‘extension’ of main memory (swapping), or as ldcache.

Specific knowledge of the workload, and of the performance
characteristics of the resources at hand guide the process of
making choices between competing uses of system resources in
the hope of making optimal use of those resources towards the
site’s goals.

Over the years, experience has taught us that certain charac-
teristics of customer workloads can be safely assumed, and
certain performance characteristics have become folklore. As a
result, there are many tuning tips that currently circulate among
CRI analysts and customers. However, much of this folklore
has been rendered obsolete by recent developments.

This paper will discuss some of the more interesting recent
changes in UNICOS and described their impact on tuning
issues. 

 

2 Fine-grained Multithreading

 

Probably the largest single change in UNICOS 8.0 is the
addition of fine-grained multithreading. This is not an entirely
new feature. Some multithreading was present in earlier
versions of UNICOS, but it was not very effective. In almost all
cases, the practical limit on the available system CPU power
was one CPU. (On a four-CPU system, this would be indicated
by a system CPU time of 25% on sar(1).)

This limit had a predictable effect on systems with multiple
CPUs. If the aggregate system CPU usage exceeded one CPU,
all other system calls had to wait on system semaphores. System
call service was delayed, and overall throughput was reduced.
Semaphore wait time was also increased because system calls
are not always initiated at convenient times.

For example, if two processes make two system calls per
second, each requiring exactly a quarter-second of CPU time,
the total system time is a half-second per process, per elapsed
second. However, this occurs only if each process makes its
system calls when the other process is not already in the kernel
with the semaphore set. If the two processes issue their system
calls at the same time, at the start of each second and at the
half-second, then the rate of system CPU usage is 1.5 seconds
per elapsed second. This is because one of the two processes
must always wait for the other to finish before performing its
system call. The wait time is clocked as system CPU time and
is spent waiting for ownership of a system semaphore.

If the aggregate system CPU time was appreciably more than
one CPU, then the cumulative effect of this semaphore wait
time could be severe. System CPU time could rise dramatically
as multiple processes ‘pile up’ on system semaphores, and
system throughput would fall. In severe cases, systems would
see idle time because the kernel could not service system
requests in a timely fashion.

Even if the actual system call CPU time was less than one
CPU, the random nature of the arrival of system calls could
cause inflated system CPU time due to collisions on the system
semaphores.
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The fine-grained multithreading feature in UNICOS 8.0 was
designed and implemented to address these problems.   The
result has been even better than many had hoped. For
multi-CPU systems, especially for systems with more than four
CPUs, the reduction of system CPU time has often been
dramatic.

Prior to UNICOS 8.0, sites were strongly encouraged to do
everything possible to reduce system CPU time. A number of
sites made choices based on the absolute requirement to reduce
system CPU time. Now that UNICOS 8.0 has arrived, excessive
system CPU time is still undesirable, but is no longer a domi-
nant issue in system tuning.

 

3 System Cache

 

 

 

UNICOS 8.0.2.1 contains a set of changes in the system
buffer cache that have a dramatic effect on system CPU time
and I/O efficiency through the cache.

The changes were made as a result of the discovery of the
large amount of system CPU time being used in the system
cache management routines.

The direct result of the changes was a large reduction in the
timings of certain system calls using the system cache. On
systems with average-sized system cache, the direct savings in
system CPU on a 

 

read

 

(2) system call could be more than 2
milliseconds of system CPU time. By comparison, a minimal

 

read

 

(2) system call takes under 150 microseconds of CPU
time. In addition, the I/O rate of data through the system cache
was dramatically improved in some cases. Some 

 

write

 

(2)
system calls showed improvements in the area of 100%.

From a global system tuning perspective, the implications of
the changes are even more dramatic. One of the fundamental
assumptions about the optimal size of system buffer cache has
been eliminated. In the past, system cache was known to be a
system bottleneck. If too much I/O passed through system
cache, it caused excessive system time.   Applications using the
cache were likely to have a poor elapsed time. The larger the
system cache, the poorer the performance.

Although system-buffered I/O is still not optimal for most
applications, the size of the cache now has no link to the system
time of the machine. The system cache is no longer the major
performance bottleneck it once was. 

In theory, a much larger system cache can now be considered
in system configurations to reduce disk access and improve
system throughput. It is possible that a sufficiently large system
cache could replace the ldcache currently used on most systems
for the / (root) and /

 

usr

 

 file systems. Administrators no longer
need to be as careful about configuring a minimal system cache.

Unfortunately, current testing has been exclusively focused
on the speed of the I/O through the cache and on the system
CPU overhead of I/O system calls. While reassuring, these
results do not indicate the extent of the advantages that might be
gained by making full use of the system cache changes.

 

4 Primary/Secondary File Systems

 

In UNICOS 7.0, 

 

mkfs

 

(8) was enhanced to allow the separa-
tion of the partitions of a file system into primary partitions and
secondary partitions. The primary partitions hold all file system
metadata and all “small” user files. The secondary partitions are
reserved exclusively for user data.

This feature effectively separates the small-granularity I/O
activity from the large-granularity activity on the file system.
This separation allows the two different types of partitions to be
optimized for each type of I/O by using different disks, chan-
nels, and parameters.

Small-granularity I/O (such as inode access, bitmaps, and
small files) works best on devices with low seek and latency
costs.   Disk bandwidth is of minimal importance because the
cost of each I/O operation is often dominated by latency time.
Devices with smaller sectors and faster rotational speeds excel
in this case. Fragmentation of available space is also of minimal
importance.

Efficiency of large-granularity I/O is normally achieved by
maximizing bandwidth. With a sufficiently large I/O granu-
larity, latency issues become insignificant.    Large-granularity
allocation is important in this situation because file fragmenta-
tion interferes with maximizing bandwidth. Striping is an
attractive option in this environment.

Primary/secondary allocation allows the administrator to
separate configuration of small- and large-granularity I/O based
on the size of the files contained in the primary and secondary
partitions of the file system.

Although file size is an imperfect basis on which to make
judgements about I/O granularity, it appears in practice to work
well.

The separation of configuration options not only allows the
administrator to choose near-optimal parameters for the two
partition types, but also does a good job of reducing hardware
contention between the two types of I/O. The small-granularity
I/O does not interrupt streaming disks and stripe-group I/O, and
large-granularity I/O does not delay access to inodes and other
data requiring rapid response.

The result of this capability is to free the administrator from
tradeoffs that previously prevented use of techniques such as
striping to increase bandwidth on file systems.

For instance, the previous lack of effective separation
between small- and large-granularity I/O made striping imprac-
tical on any file system with non-trivial quantities of
small-granularity I/O (which interferes with efficient striping). 

With the primary/secondary feature, a file system with
mixed-granularity I/O could be configured, for example, as four
primary partitions and 12 secondary partitions, each consisting
of a stripe group (sdd). In such a file system, the smaller-gran-
ularity random accesses tend to be confined to the primary parti-
tions. I/O for the larger files, which is likely to be
larger-granularity I/O, is confined to the striped secondary
partitions.
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Other benefits of this feature include the reduction of the
number of partitions that need to be updated at

 

 sync

 

(2) time,
and the ability to choose the number of available inodes on a file
system independent of the major allocation granularity of the
file system.

The net result is that substantial flexibility and potential
performance gains are now offered to administrators who wish
to take advantage of this capability. 

 

5 Ldcache Trickle-sync 

 

When used appropriately, ldcache can be of tremendous
advantage to the performance of a system. Ldcache is included
in this paper not because recent changes have had a large
impact, but because old ideas still appear to be obstacles to effi-
cient use of ldcache.

The ldcache trickle-sync feature was first introduced in
UNICOS 6.1.7. However, it is still not widely used; where used,
it is often not well understood. It remains a feature that can have
a major positive impact on system performance.

The trickle-sync feature includes:

• Changes to the algorithm that chooses ldcache units to
sync to disk.

• The 

 

-x

 

 max,min

 

 option which controls trickle-sync by
cache data age

• The 

 

-h

 

 high,low

 

 option which controls trickle-sync by
amount of ‘dirty’ data

 

5.1 Ldcache algorithm changes

 

Prior to the addition of trickle-sync, the ldcache algorithm to
select which data in the cache to sync to disk was a simple LRU
(least recently used) algorithm. Dirty and non-dirty data was
handled in the same way, and the least recently used portion of
the cache was always the one reused when new cache space was
demanded.

This algorithm had some very nice performance benefits.
Unfortunately, it also had some undesirable side-effects on data
integrity.

This algorithm guaranteed that the most frequently used data
in the cache was the least likely to be synced to disk. File system
metadata (like inodes, bitmaps, and directories) are often very
frequently accessed. Because these are seldom the least recently
used blocks, the algorithm seldom selected them to be synced.
Therefore, when the most critical filesystem data was updated,
it was left in cache and almost never written to disk. This meant
that ldcache relied heavily on the 

 

ldsync

 

(8) command, which
is periodically performed by 

 

init

 

(8), to force this data to be
written to disk.

Unfortunately, this presented administrators with a difficult
choice between performance and reliability. The ldsync interval
was the only tunable parameter for controlling the ldsync
behavior. Short ldsync intervals tended to prevent file system
corruption in the event of an interrupt, but had very negative
performance impacts. Long ldsync intervals tended to improve

performance characteristics, but left the file systems vulnerable
to corruption in the event of an interrupt. Even with a longer
interval, there was still a large ‘spike’ of disk activity when
ldsync was executed. The default of 120 seconds seemed to be
too long for most critical file systems, but too short to satisfy
performance concerns. Some sites even developed hybrid
schemes using 

 

cron

 

(8) and periodic reallocation of ldcache to
avoid this tradeoff.

The addition of trickle-sync code to UNICOS changed the
sync selection algorithm. The selection of cache units to sync is
no longer made on the basis of how recently they have been
accessed, but on the basis of how long it has been since they
have been changed (made dirty). The result is that the sync
operations from cache to disk now match the order of operations
from user to cache much more closely, resulting in reduced
chance of corruption in the event of a system interrupt. 

 

5.2 Ldcache -x option

 

The 

 

ldcache

 

(8) 

 

-x

 

 option improves the flexibility of
ldcache by allowing the administrator to choose the maximum
allowable age of dirty data in the cache. This option accepts the

 

max,min 

 

parameters. The 

 

max

 

 parameter represents the
maximum age, in seconds, of cache data. If any unit in the cache
reaches this age, all units more than 

 

min

 

 seconds old are synced
to disk.

This behavior has several advantages over the periodic

 

ldsync

 

(8) command. It is file system specific. Critical file
systems can be configured with short 

 

max

 

 values to ensure that
data on these file systems is written to the underlying disk in a
timely fashion. Scratch file systems can be configured with
large values to avoid disk I/O as long as possible, which
improves performance. If the 

 

max

 

 and 

 

min

 

 values are close
together (such as 30,28), only a small amount of data is synced
every two seconds, and the load on the underlying disk is
‘smoothed’ very nicely (that is, the spikes caused by ldsync are
avoided).

 

5.3 Ldcache -h option

 

The 

 

ldcache

 

(8) 

 

-h 

 

option is probably the least under-
stood ldcache option, but it is arguably one of the most useful
for ldcache performance management.

This option regulates the amount of data in the cache that can
be ‘dirty’ at one time. It is used to maintain the primary advan-
tage of the cache: keeping frequently used data in the cache so
it can be repeatedly accessed.

Without this option enabled, processes that write large quan-
tities of data to ldcache have the ability to dominate the cache.
This option allows the administrator to limit the proportion of
the ldcache that is available for write activity.

The 

 

-h

 

 option accepts the 

 

high,low 

 

parameters. The 

 

high

 

parameter specifies the maximum number of ldcache units (as
specified also on the 

 

-n

 

 

 

option) that are permitted to be ‘dirty’.
The 

 

low

 

 value is used as a trigger to start disk I/O. Once this 

 

low
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threshold is reached, each time an ldcache unit is made dirty,
I/O is started on the oldest dirty unit in the cache.

This means that if the number of dirty units in the cache is
greater than 

 

low,

 

 and 

 

current

 

 is the current number of dirty units
in the cache, then outstanding I/O is active on at least 

 

current -
low 

 

units.
Early problems with this code have been fixed and the

performance advantages of this feature have been shown over
and over again.

If trickle-sync is configured on all ldcache allocations, peri-
odic ldsync operations can be almost entirely eliminated.

The most visible and dramatic performance advantage of this
feature is the ability to smooth out bursts of ldcache disk I/O,
which, in severe cases, can briefly make a system appear hung.
This problem is all too common on systems with very large
ldcache that do not properly use trickle-sync.

This feature is reliable, fairly simple, and supported in the
install tool. It offers great advantages for any site using ldcache.

 

6 SDS packing 

 

UNICOS 8.0.3.1 introduces SDS packing, which is simply
the ability of the kernel to move, or ‘pack’, SDS space directly,
without using checkpoint or suspend operations.

 

6.1 SDS history

 

SDS was developed to make good use of the SSD and the
VHISP (Very High Speed) channel. At VHISP speeds, even a
delay of a few microseconds could substantially reduce the
effective transfer rate of a request. The system calls created to
support SDS gave the user direct access to the SSD with the
lowest possible overhead (latency). In theory, this would allow
even small requests to get a reasonable portion of the theoretical
speed of the VHISP.

In fact, the SDS mechanism turned out to be very effective.
The transfer rates attainable with SDS are higher than those of
an SSD file system, and far higher than those of ldcache.
Clearly, if peak performance is desired, SDS is the method of
choice.

Unfortunately, to get these high transfer rates, the SDS
mechanism had to be very simple and very fast. Contiguous,
monolithic allocation was chosen for its speed and simplicity.
As a result, fragmentation was very likely. The management of
this resource was difficult, and has historically been relatively
poor.

The quickfile daemon was developed to try to alleviate these
problems. It used checkpoint/restart to preempt SDS so as to
decrease fragmentation and manage oversubscription.
However, this mechanism proved to be inadequate. Check-
pointing turned out to be a very expensive management mecha-
nism. Also, limitations on checkpoint meant that many jobs
could not be managed by the quickfile daemon.

In UNICOS 8.0, the SDS manager was changed to use
suspend, which had fewer limitations but still had drawbacks. 

Suspend has almost none of the restrictions of checkpoint,
but is a similarly expensive operation. Both checkpoint and
suspend depend on copying the SDS image to a secondary
storage device, which can be prohibitive with large SSDs.

Because the SDS relocation mechanisms are expensive,
design decisions were made in the I/O libraries to avoid
changing SDS segment sizes. The maximum amount of SDS
space permitted for the job was always allocated, regardless of
the actual amount requested.

An additional problem with SDS is that the SDS arena is
shared with ldcache. It is often desirable to reallocate ldcache
dynamically to respond to changes in workload. If done while
jobs using SDS are running, SDS arena fragmentation is likely.

 

6.2 UNICOS 8.0.3.1 SDS changes

 

To improve SDS management, two changes were made to
the UNICOS kernel:

• ldcache now allocates SDS space starting at higher
addresses, or ‘top down’, rather than starting at address
zero and working toward higher addresses.

• The concept of ‘gravity’ has been introduced to the SDS
arena. Processes with SDS allocations ‘slide’ their alloca-
tions toward lower SDS addresses when SDS demand dic-
tates.

The first change allows the reallocation of ldcache without
direct conflict between SDS allocations and the ldcache space.

The second change causes the user SDS allocations to
migrate toward address zero in an orderly fashion as SDS is
allocated and deallocated.

The actual movement of SDS segments is done using main
memory and the VHISP channels. It is a very efficient and
simple routine that allows the rapid relocation of SDS with
negligible impact on the overall system. It is completely trans-
parent to the application and has no dependence on available
swap or checkpoint space.

 

6.3 SDS packing benefits

 

The SDS packing feature is of immediate and obvious
benefit to all sites that either use, or want to use, SDS.

This feature tremendously reduces the reliance on suspend to
perform SDS management. In cases where SDS is not actually
oversubscribed, SDS packing can often be done without any
need for suspend operations.

For a site that actually oversubscribes the SDS resource, the
job of the SDS manager is much easier, because remaining SDS
allocations are packed in low SDS, leaving a single contiguous
SDS region to be managed. This behavior reduces the amount
of swap space required to support SDS oversubscription.

Full advantage has not yet been taken of this feature. Given
this more efficient packing of SDS, the libraries could be
changed to manage SDS as they were originally intended, allo-
cating only the SDS being used rather than the NQS limit from
start to finish as is currently being done. Interactive use of SDS
could be accommodated.
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Although this change does not eliminate the chance of
ldcache fragmentation, a careful administrator can now change
ldcache at any time on a running system, without taking
extreme measures such as suspending all SDS work. The final
result is that SDS usage has been made much more attractive.

 

7 Conclusion

 

Important performance characteristics of UNICOS have
changed in recent releases. Changes with the most impact on
tuning folklore include:

• Fine-grained multithreading improves overall kernel per-
formance and reduces the need to lower system CPU time.

• System buffer cache changes improve I/O performance

and allow the administrator more freedom in choosing sys-
tem cache size.

• Primary/secondary partitioning improves tuning precision
and flexibility in disk configuration.

• The ldcache trickle-sync feature improves the efficiency
and reliability of ldcache.

• SDS packing addresses longstanding SDS management
issues, making SDS usage much more attractive.

It is time to update the ideas of optimal tuning parameters in
order to take advantage of the opportunities for improved
system performance offered by these changes.


