

268

CUG 1995 Spring

 Proceedings

Terrain Correction of Synthetic Aperture
Radar Imagery Using the Cray T3D

Thomas Logan

, Alaska SAR Facility, Fairbanks, Alaska

ABSTRACT:

A parallel terrain correction algorithm for ERS1 SAR images was implemented
using C and the PVM message passing libraries on a CRAY T3D at the Arctic Region Supercom-
puting Center. Algorithm optimizations focused on load balancing among individual processors
and between I/O and processing times. Scalability and efficiency of the programs were exam-
ined, showing 8 processors gives the best efficiency for terrain correction of SAR images at 90
meter pixel resolution, while the programs with large processing kernels show over 90% scal-
ability up to 32 processors. With 8 processors, the parallel implementation executes 40 times
faster than the original code, reducing processing time for a full-res SAR image from over 4.5
hours using Sun workstations to under 7 minutes.

1 Image Distortions

Synthetic Aperture Radar (SAR) images have severe
geometric and brightness distortions over elevated and sloping
terrain due to the nature of the SAR range mapping and reflec-
tance functions[1]. Before SAR images can be used for accu-
rate surface mapping and change detection, these distortions
must be removed through a process called terrain correction.
Once distortions are removed, the all-weather capability and
fine ground resolution available from satellite SAR instruments
provide scientists with a powerful tool. The ability to perform
terrain correction on SAR images facilitates a great variety of
land applications of satellite SAR imagery, including the areas
of land mapping, geology, forestry, hydrology, glaciology, and
volcanology.

SAR imaging requires precise determination of the relative
position and velocity of the radar platform with respect to its
target at all times. However, this information is not available at
the time of imaging, since the platform must be moving in order
for the azimuth resolution technique to work. The basic solu-
tion is to assume that the platform has a uniform velocity over
a smooth geoid. This simplifies the image creation consider-
ably, but introduces certain distortions into the results.

When there is significant relief in the area being imaged, a
considerable target height error will result from the smooth
geoid assumption[2]. This height error, when projected onto
the slant range image, gives rise to a slant range error. The slant
range error in turn gives rise to a cross-track displacement error
in the ground range image, called the absolute location error
(see Figure 1). This distorts pixel placement in an image,
rendering it unsuitable for quantitative analysis of terrain
features. In addition, the smaller the look angle,

γ

, of the SAR
beam, the larger this distortion becomes. For example, in the
near range of ERS-1 SAR images, each meter of height estima-

tion error results in nearly 3 meters of cross-track displacement
error.

2 Terrain Correction Process -- Theory

To remove the geometric distortions due to terrain relief, this
research adapted an algorithm originally developed by Charles
Wivell at the USGS Eros Data Center[3]. The algorithm uses a
SAR image and a corresponding Digital Elevation Model
(DEM) as inputs to create a simulated SAR image based on an
imaging radar model. Then, the simulated SAR image is
spatially correlated with the actual SAR image. Once the best
correlation is achieved, the radiometric values of the actual
SAR image are placed by inverting the mapping from the DEM
to the SAR image.

Figure 1:

 Height Error,

h

⇒

 Slant Range Error,

∆

R

⇒

 Location
Error,

∆

R

. For the flat earth model,

γ

 is equal to

η

. Also, the
assumption is made that

R

 >>

∆

R

.

CUG 1995 Spring

 Proceedings

269

The first correction applied is

radiometric calibration

.
Ideally, this process will adaptively compensate for all spatial
and time dependent variations in the radar system transfer char-
acteristics. Included here are cross-track and image to image
intensity inconsistencies due to signal attenuation by distance.
Conversion from echo received to mean surface backscatter
establishes a common basis for all pixel intensities, giving
unique backscatter that is independent of positioning in an
image or of the particular image viewed [4].

To correct image orientations, SAR images are

geocoded

.
Here, the SAR image is resampled to a spatial representation
with known geometric properties. Standard map projections,
like the Universal Transverse Mercator (UTM) or longi-
tude/latitude mapping, are used. Processing involves rotation
and scaling of an image to properly transform it into the
mapping coordinates chosen. Since images are taken at varying
pass angles, each

geocoded

 image contains an approximately
square rotated SAR image inside it, with unused image pixels
set to black. An example of this is given in Figure 2.

Another correction applied is

geometric rectification

. This
process resamples an image to remove the geometric distor-
tions. It is accomplished by applying adjustments that compen-
sate for the difference between actual and estimated terrain
height for a particular image. The results are undistorted
images in the sense of orthographic maps. Therefore, these
images are suitable for use in geographic distance calculations
and size measurements. The resulting images appear with
correctly spaced and placed land marks, and mountains that
have properly sized slopes.

3 Implementation Details

The terrain correction software package prepared at ASF is a
standalone set of nine programs and their subroutines. The
parallel implementation uses C and the T3D version of the
parallel virtual machine (PVM) message passing routines [5].
Programs are called by system calls from a C main program.

A flow graph for the terrain correction process is given in
Figure 3. The inputs are a raw SAR image with its metadata and
a LAS [6] format DEM file clipped to the area corresponding to
the coverage of the SAR image and mapped to the UTM projec-
tion. The output is a terrain corrected SAR image.

A project of this magnitude involves many implementation
choices. When the goal is to use a parallel machine to speed

processing, one must have suitably parallel problems. Next, an
efficient strategy to exploit the parallelism must be established.
Finally, correct latency-hiding techniques for the parallel archi-
tecture must be applied. A summary of the choices made for
this project is given in Figure 4. The terms used in the table to
describe the parallel implementation choices are defined below.

Work Sharing

. The simplest parallel processing paradigm
is sharing, where each processor is an equal partner in a group
effort. Data-sharing involves each processor determining its
own piece of the input data based on the total number of
processors. This leads to work-sharing, where the work is
split into equal pieces across the processing elements.

Most of the first draft programs for this project were rapidly
prototyped using this combined sharing paradigm. As long as
iterations of the main loop are neither output nor control depen-
dent, one can utilize multiple workers simply by distributing
these iterations. Independently, the workers determine the
number of loops to be accomplished, the total number of
workers, and their own starting and ending iteration numbers.

Figure 2:

Geocoded

 SAR image

Figure 3: Terrain correction flow graph

270

CUG 1995 Spring

 Proceedings

Once a processor’s iterations are known, the appropriate input
data can be read.

As program optimizations progressed, it became obvious
that having global control of input or synchronization was
necessary in most cases. This was due mainly to the I/O conten-
tion that arises when multiple processors try to access a single
file.

Master-Slave Processing

. To reduce I/O contention and
provide synchronization, the master-slave paradigm was used.
One master processor controls the distribution of work, distri-
bution of processing parameters, and collection of output data.
The remaining processors are the slaves, also called workers.
The slave processors get their name from the functions they
typically fulfill, which are to wait for work assignments from
the master, perform the assignments, and return the results to
the master. The amount of control the master has over the
slaves varies by algorithm according to the circumstances.
Several different input, output, and synchronization strategies
were used in this project.

I/O Strategies

. Input strategies are termed either exclusive
or concurrent. In the former case, the master is the exclusive
input agent, performing setup and reading data files as needed.
When using concurrent input, each worker is allowed to read its
data directly from the input file. Rather than receiving work

distributions from the master, inputs are split equally among the
workers as in sharing.

In many applications, output from parallel programs must be
performed exclusively by a single processor because the output
must be ordered in a certain way. In exclusive output, one
processor performs all output. However, the means of gath-
ering and ordering output varies. One version is cooperative
output. Algorithms in this class allow workers to retain results
until processing is completed, then results are combined in an
additional processing stage. This reduces the overall message
overhead, but may tend to flood the master with messages. To
alleviate this bottleneck, a binary tree summation of the outputs
may be performed. Another output scheme, submission,
requires the master processor to have immediate responses from
the workers. If input images are processed from the first line to
the last, regular submission of results naturally lends itself to
creation of a properly ordered output file. Each time an output
line is received by the master, an input line is sent to the slave,
keeping a steady work load on the system. This allows the
master’s output combination time to be hidden in the processing
time of workers.

Synchronization

. Synchronization strategies are the most
varied, being tightly, loosely, or non-coupled. Tightly-coupled
algorithms use lock step synchronization on each iteration of a
processing loop. The master will only accept output messages
from workers in the proper order. Similarly, the input messages
are sent in order. This keeps all processors in step at all times.
Loosely-coupled synchronization occurs when workers receive
assignments from and return outputs to the master, but each
proceeds at its own pace. The master receives output lines in
any order and sends input lines to the first idle worker.
Non-coupled algorithms do not require synchronization in main
processing loops. In one version, after the master sets up
processing, it merely receives output and writes it to disk. The
other allows all processors (including the master) to work on
separate input file sections, not synchronizing until the output is
coalesced in a final processing stage. This is identical to
sharing.

Latency-Hiding Techniques

. Buffered reads and writes are
incorporated in all of the parallel programs written for this
project. Input data are always pre-read before needed, either in
large blocks or by an entire file. This decreases the wait time
inherent in master-slave processing. When slaves send results
to the master, they must wait for their next assignments. If the
master reads input data into RAM ahead of time, it can be sent
immediately after a completion response is received from a
worker. Having one processor ready at all times to send more
input reduces the workers' wait times. Similarly, storage of
output data until a large amount can be written to disk reduces
overall access overhead and decreases total worker wait time.

Exclusive I/O for the master processor is the rule used in the
T3D code. The ARSC T3D has only 4 I/O channels, two high
speed and two low speed, for communication with the host
Y-MP system. The Y-MP must respond to requests from the

Figure 4: Implementation choices

CUG 1995 Spring

 Proceedings

271

T3D as well as from its own processes. This makes file I/O the
slowest link in the processing chain. Thus, reduction of file
contention represented a significant part of the optimizations
performed for this project. Restricting metadata file reads to the
master processor allows nearly constant algorithm set-up time.
Since the metadata involved in terrain correction comes from
three short files, having more than four processors simulta-
neously performing setup degrades performance to serial
execution at disk access speed. Constant start-up time is one
thing, but file contention occurs during processing as well. For
this reason, exclusive reads are used in all but two of the
programs.

Multiple line sends establish a balance between processing
time and the overhead involved with processing. Each worker
must take as long to process a single input message (receive, do
work, return output) as it takes the master to process all other
workers (receive and store output and read and send input).
Otherwise, workers will have to wait to be serviced. A block
processing method that provides scalable input message sizes is
used for several of the T3D programs. This method introduces
a variable called

block

 which controls the number of input lines
that are to be sent per message. By adjusting this variable, a
balance can be achieved that virtually eliminates worker wait
time, up to the maximum number of workers a single master can
service.

4 Results

To properly analyze setup, wait, file, work, and output coop-
eration times in the parallel programs, each of these actions was
surrounded by timer calls. Examples of sectioned T3D timings
for the master processor and the slowest slave processor are
given in Figure 5. The las_to_raw time was not subdivided
since it operates in a serial fashion. The Y-MP times for edit-
corr and tiecoef were not subdivided or analyzed due to the
small CPU times involved.

The same full resolution SAR scene and DEM file were used
for all timings. All measurements give elapsed CPU times in
seconds. IIAS program execution times were extracted from
TAE log files produced during the terrain correction run. T3D
times were obtained using rtclock() calls, which return a
processor’s clock counter value. Differences in successive calls
divided by the clock rate (150 megahertz) gives CPU seconds.
Y-MP times were gathered using the CRAY Hardware Perfor-
mance Monitor (HPM) utility [7].

It should be noted that timings fluctuate somewhat due to
varying response times for I/O requests through the Y-MP and
the resulting impact of this variation on algorithm flow. In
extreme cases, as much as 20 seconds variation was observed
on the longer runs. Figure 6 lists the total time for an average
of sample runs of each program. The IIAS calibrate and resa-
mple times are from a Sun 4/280 (16 MHz) server, the rest are
from a Sun Sparc2 (40 MHz) workstation. The T3D programs
were run using from 2 to 64 processors.

5 Performance Measures

Several measures for processor performance are discussed in
this section. For this code, a count of Millions of Instructions
Per Second (MIPS) gives the most accurate performance
measure because using Millions of FLoating point OPerationS
per second (MFLOPS/sec) ignores the large quantity of integer
and byte operations involved with byte image processing.

Figure 5: Example of sectioned timings using 16 T3D processors.
Differences in master and slave tasks are immediately obvious, as
are the large time portions used by calibrate, sarsim and sargeom.

Figure 6: CPU Times (seconds). Totals for T3D versions include
Y-MP and serial T3D run times.

272

CUG 1995 Spring

 Proceedings

Either measure indicates the rate at which a single processor is
executing, and, when compared with benchmarks, shows how
well a program takes advantage of the architecture at hand.
Instructions counts and performance measures for the base case
runs were obtained from the Y-MP version of each program
using the HPM utility (Figure 7). The total operations for a
single run of the terrain correction code is estimated to be
105,618 million operations, or 105.6 giga-ops, of which 25
giga-ops are floating point operations.

The MIPS and Mflops/sec calculations for each run, shown
in Figure 8, were made using the instruction counts divided by
the total times given in Figure 7. The parallel code achieves
about 700 MIPS and 170 Mflops/sec for both 32 and 64 proces-
sors. The MIPS per worker and Mflops/(sec*workers) peak at
39.7 MIPS and 9.4 Mflops/sec on 2 processors, while values
bottom out at 12 MIPS and 2.7 Mflops/sec on 64 processors.

The theoretical peak for the DEC alpha processor used in the
T3D is 150 MIPS. Achieving 39.7 MIPS per processor shows
26% of this peak, which represents a high percentage of such
theoretical numbers. The Linpack rating for a DEC alpha
processor is 30 Mflops/sec [8]. However, the Linpack result is
for an Alpha workstation with a secondary cache that is not
present on the T3D. The result of 9.4 Mflops/sec for a program
which consists of less than 25% floating point operations and
requires considerable I/O time shows good processor usage.

Slight decreases in processor performance are observed for
the 4 to 16 processor cases. This is due to the slowly increasing
percentage for the constant serial time compared to the
decreasing parallel times. Both of the performance measures
drop off rapidly above 16 processors when calculated on a per
worker basis. This show the dominance of the non-scalable
programs (despike and resample) and the serial code
(las_to_raw, editcorr, and tiecoef) when using a large number of
workers.

The decrease in performance based on the increase of serial
and non-scalable percentage of time is displayed in Figure 9.
This shows the relative time used by the serial, non-scalable,
and scalable programs, when using from 2 to 64 processors.

Examining the large time slice used by the non-scalable
programs in the last two runs, it becomes obvious where the
time is being spent and why the performance measures fall off
rapidly for these cases. It is interesting to note the that total time
used by the non-scalable programs is 79 seconds for both the 2
and 64 processor runs. So, the combination of serial and
non-scalable times are constant, while the scalable program

Figure 7: Instruction counts and base performance measures.

Figure 8: Performance measures for the ASF terrain correction
code. A total of 105.6 billion operations are performed each run.
The maximum of 726 MIPS is attained on 64 processors, while the
maximum of 39.7 MIPS/worker occurs for the 1 worker (2 PE)
case. The overhead of the master processor is ignored in these
calculations.

CUG 1995 Spring

 Proceedings

273

times decreased by a factor of almost 50. As the percent of
serial time increases, total scalability decreases, regardless of
the scalability of the individual programs.

The speedup per processor, or processor efficiency, is
graphed in Figure 10. These numbers are speedup /

PE

instead of speedup /

workers

, to include the overhead of having
a master processor. Thus, it reveals that for more than 16
processors, the masters are no longer able to keep up with the
workers (more than 16 processors) so efficiency is waning. A
similar measure, the ‘128 PE image time,’ shows the time per
image if N jobs with p = 128/N PEs per job are run simulta-
neously (Figure 11). This time is found by scaling the time for
a single run on p processors by the factor p/128. This gives the
average time per result if an entire 128 node T3D were utilized.
It points out the large cost of having an idle processor when only
two or four total are used. Both Figures 10 and 11 affirm 8 to
be the number of processors used most efficiently.

6 Conclusions

The final ASF version of the code contains 4 scalable
parallel, 2 non-scalable parallel, and 3 serial programs. To see
the relative execution times of these programs, total run times
are graphed by module in Figure 12. Notice that the serial

programs (las_to_raw, editcorr, tiecoef) are basically invisible,
while the times of the non-scalable programs are insignificant
until 32 or 64 processors are used. This idea was amplified in
Figure 10, where one can see the percentage of total time used
by the scalable, non-scalable, and serial portions of the code.

Master-slave paradigm variations dominate the parallel
implementation choices for this project. This was done to
provide short term scalability for the programs by eliminating
file contention and the resulting breakdown into serial execu-
tion. The latency hiding techniques of restricted and buffered
I/O and block processing were tested and are included to some
degree in all of the parallel programs. To reduce I/O overhead
and the resulting processor wait time, programs use block reads
and always pre-read data. Program output is buffered in a
similar manner.

Figure 9: Percentage of time spent in parallel and serial portions
of code. As the number of processors increases, the non-scalable
parallel algorithms consume a greater portion of the processing
time. As the total processing time decreases, the serial code
portion of the time increases.

Figure 10: Speedup per processor

Figure 11: Time per image on 128 PE

Figure 12: Terrain correction times by module on 2 to 64
processors

274

CUG 1995 Spring

 Proceedings

For the master-slave programs, interleaved receives and
sends are used to reduce worker wait times. Restricting I/O to
a single processor improves short term scalability by removing
I/O contention. These techniques along with distribution of
proper sized work blocks for a target number of processors,
reduce worker wait time almost to zero and give over 90% effi-
ciency with 32 processors.

In addition to master-slave processing, two work sharing
programs are used. These programs, resample and despike,
have small processing kernels but large I/O requirements.
Thus, a scalable implementation was not possible. Rather, the
parallel implementation that gave the best run time for 8 proces-
sors was chosen in order to further strengthen overall perfor-
mance for that number of PEs.

The scalability performance of the parallel programs is given
in Figure 13. The efficiency, which is speedup per worker,
shows the ability of the code to use more workers at the same
rate as the base case (1 worker, 2 PEs). The loss of efficiency
for 16 or more processors results from the increase of non-scal-

able and serial portions of the total run time when using a large
number of processors.

References

[1] Curlander, J. C., and R. N. McDonough, Synthetic Aperture Radar, Sys-
tems and Signal Processing. New York : John Wiley and Sons, 1991.

[2] Olmsted, Coert,

Alaska SAR Facility Scientific SAR User’s Guide

,
ASF-SD-003, July 1993.

[3] Wivell, Charles E., Coert Olmsted, D. Steinwand, and C. Taylor, An Earth
Remote Sensing Satellite-1 Synthetic Aperture Radar Mosaic of the
Tanana River Basin in Alaska, Photogrammetric Engineering & Remote
Sensing, v59, p527-528, April 1993.

[4] Bicknell, T.,

User’s Guide to Products

, JPL D-9362, January 1992.
[5] CRAY Research Inc.,

PVM & HENCE Programmers Manual

, SR-2501,
May 1993.

[6] Ailts, B., D. Akkerman, B. Quirk, and D. Steinwand, LAS 5.0 - An image
processing system for research and production environments, 1990 AC-
SM-ASPRS Annual Convention, Technical Papers, Denver, Colorado,
Vol. 4, pp 1-12, 1990.

[7] CRAY Research Inc.,

UNICOS Performance Utilities Reference Manual

,
SR-2040 7.0, 1992.

[8] Dongarra, Jack,

Performance of Various Computers Using Standard Lin-
ear Equations Software

, University of Tennessee Computer Science De-
partment Report CS-89-85, June, 1992.

Figure 13: Speedup for parallel programs

