

CUG 1995 Spring

Proceedings

275

Building Performance into the Development Process

Bruce Schneider,

Cray Research, Inc., System Performance and
Analysis Section, Eagan, Minnesota

Introduction

The System Performance and Analysis Section (SPA) in the
Operating System Group has changed it’s direction over the last
year to focus on evaluating performance up-front instead of
after the fact. This section previously reported on performance,
now it impacts performance during the development process.
An example of this is at the Spring CUG in 1994 a member of
this section gave a talk on the performance of the UNICOS 8.0
operating system. While this was interesting to most of you,
some of you had already installed and were running 8.0. The
performance results gathered were after the software was
designed and implemented. This year, I will talk on Friday
about performance issues of a modular distributed operating
system (UNICOS/mk) on the upcoming T3E architecture.
Instead of talking about performance of a product already out, I
will talk about the performance of a system under development;
a system that we are building performance into. To give you
background first though, I have to talk about how we build
performance into the development process.

This change in philosophy from evaluating systems to
providing input into the development cycle has many driving
factors. The main factors, which is affecting all industries, is
time to market and competition. Getting the right product out
to market in a timely fashion is crucial to surviving. To address
this, CRI is creating shorter hardware development cycles
which in turn shortens the software development cycle.

In order to address the pressures of time to market and
shorter development cycles, the time and cost of software
design be reduced. Redevelopment due to inaccurate designs
must be eliminated. Software designs must: be developed
quicker, be right the first time and perform optimally. The ulti-
mate goal being the ability to provide well thought out perfor-
mance based software quickly to our customers. The only way
to do this is to build performance into the development process.

One key component to building performance into a system is
knowing customer workload characterization. Workload char-
acterization is the knowledge, data, or sample of some specific
sequence of events. In designing the performance into a piece
of software, the closer the data used to test the software mimics
what a customer will run in a production environment, the
better the end design will be to meet actual customer require-
ments.

Workload characterization data is used as input data to drive
models. This makes models more predictive of real customer
workloads. The second use of workload characterization is that
the workload becomes a basis for actual performance tests.

An example of customer workload characterization is we
polled data from ten UNICOS sites representing diverse indus-
tries and classified the system call usage. From this we created
a synthetic workload that mirrored the percentage of system call
usage we gathered. We made these tests reproducible and
predictable and use this for performance analysis to look for
code regressions in UNICOS releases.

We have experience at knowing what customers run on a
PVP machine but we believe this will not be the same type of
workload on an MPP. We are in the process of gathering
customer workload characterizations for the MPP to create
input data to drive our MPP models.

The first phase of building performance into a system is
modeling. Modeling allows early software access to new hard-
ware. By modeling the characteristics of the hardware, various
software design alternatives can be explored. From this,
expected performance levels of the software designs can be
determined. This feedback early in the development cycle
allows for design decisions to be made based upon performance
characteristics. Because modeling uses an analytical technique
rather than relying on intuition, design decisions can be made
with relative confidence.

An example of a model we created was to answer the ques-
tion of the I/O capability of Serverized UNICOS on the T3E
architecture. When the UNICOS operating system was multi-
threaded we had no analytical data to show the expected
improvement until after the code was developed and actual tests
run. With modeling we can predict performance results before
major code development decisions are made.

Three modeling projects related to: T3E architecture, Serv-
erized UNICOS and the SCX channel are detailed in the talk
titled “Modeling Serverized UNICOS on the T3E Architec-
ture”.

The next phase of building performance into a system can be
simulation. Simulation can provide a finer level of granularity
than modeling and also validate the modeling results. Simula-
tion allows you to emulate software running on new hardware.
An example of simulation that we currently use is a T3E hard-
ware instruction set simulator that allows us to develop and
verify T3E software such as the operating system and
compilers.

Copyright © Cray Research Inc. All Rights Reserved

276

CUG 1995 Spring

Proceedings

The last phase of building performance into a system is veri-
fication; the testing of the software on the actual hardware.
Tests can be written to exercise the software on the hardware
and determine timing results. These results can then be
compared back to the predicted modeling and simulation
results. This validation is a loop whereby the actual testing
results verifies the accuracy of the modeling and simulation.
This feedback loop allows for the knowledge to create more
accurate models and simulations on future projects. Modeling
and simulation may have pointed out areas of concern that
should be exercised thoroughly by creating specific tests.
These performance tests can then become the basis for future
regression testing.

Another key to testing is to perform regression testing such
that it is timely enough to have an impact upon the development
process. Currently we run our performance workload tests on a
weekly basis. In a sense this is continuous testing. The idea is
to find any performance regression and identify the specific

code within two weeks of code integration while the code is still
fresh in the developers mind. An example is while running the
customer system call synthetic workload test we noted a regres-
sion in some non-shared File System I/O calls from code being
developed for the Shared File System. From the time the code
was integrated into the system, a regression was determined, a
piece of code identified as causing the regression and the appro-
priate developer notified, took less than 5 days.

Summary

Cray Research customers use models, simulation and obser-
vation to analyze everything from financial trends to engine
combustion, even the weather. I believe if you can use these
tools to predict something as unpredictable as the weather we
should be able to model software design decisions. The key is
though while you may not be able to change the weather, we
believe we can impact software and hardware performance.

