

CUG 1995 Spring

 Proceedings

297

TOP2

Tool Suite for Partial Parallelization

Ulrich Detert

 and

Michael Gerndt

, Central Institute for Applied
Mathematics, Research Centre Juelich, D-52425 Juelich,
Germany

ABSTRACT:

TOP2 is a tool suite that aids users of parallel systems with distributed memory in
porting existing sequential applications by supporting the separation of compute-intensive
kernels of an application from the existing sequential code and providing a development environ-
ment for the parallelization of these code segments.
In this scenario, the sequential and the parallel code are run simultaneously as a distributed
application on both systems and automatically exchange context data between both components.
Main features in this process are the provision of cross-domain message passing for the auto-
matic distribution of program data from the sequential machine to the distributed memory system
and the ability of on-line debugging of the parallelized code. The data distribution features of

TOP2 are a subset of those defined in HPF Fortran and thus especially support algorithms on
regular data structures exploiting data parallelism in the context of SPMD programming.

1 Introduction

Different from vectorization, the parallelization of
existing sequential programs for distributed memory parallel
systems is by its nature not a local process. Due to the necessity
of data distribution, it is often very hard to break up large
sequential applications into handy modules for parallelization
since the data distribution in one module will always affect
those in other modules and, hence, also the access to the data.
For this reason, it is often not naturally possible to proceed in
small steps when parallelizing large sequential applications for
distributed memory systems.

As a consequence, most applications that are initially ported
to new distributed memory parallel systems are either rather
small in code size or, in other cases, are only partially parallel-
ized, executing major portions of the code sequentially on just
one processing element (PE) using dynamic distribution of data
for the parallelized program kernel. If, however, the storage
requirements for data arrays are too big to be fulfilled by a
single PE, the latter mode of operation will not be possible. In
this case, in order to modularize the task of program paralleliza-
tion, it will be necessary to first isolate and parallelize a module
from the existing sequential program, write a parallel main
program and include the parallel code for execution, generate
and distribute realistic input data for testing, and finally run the
parallelized program module and compare its results with those
of the original sequential module. The whole process has then

to be iterated until the entire application is parallelized and all
modules can be combined together. It is obvious that this
method of parallelization will be rather tedious and also
error-prone if applied to really big applications.

TOP2 attacks the problem by a different approach,
providing a distributed environment for the development and
testing of partially parallelized applications, where the
remaining sequential portions run on the sequential machine
and the parallelized program modules execute on the distributed

memory parallel system. With TOP2, all program development
steps, except the parallelization itself, are automated according
to user directions. I.e. the extraction of a parallelizable program
module, the generation of a parallel frame program, the data
exchange between the sequential and the parallel machine over
the network, the distribution of the data onto the processing
elements, the conversion of the internal data formats, and
finally the proper comparison of the results obtained in the
parallelized version of the program module with those of the

original module are all realized through TOP2 functions.

The data distribution features of TOP2 are a subset of those
defined in HPF Fortran [HPF 93] and thus especially support
algorithms on regular data structures exploiting data parallelism
in the context of SPMD programming. Abstract processor
arrays with up to seven dimensions are the basic vehicle for data
distribution specifications in this scenario. Fortran data arrays
may be distributed by distributing each array dimension onto

298

CUG 1995 Spring

 Proceedings

the corresponding dimension of a processor array. The distribu-
tion scheme may be "block", "cyclic", or "replicate" (not
distributed) in each dimension. The abstract processor arrays
are mapped onto the physical processing elements of the target
architecture which implicitly distributes the data onto the PEs.
Intrinsic functions for index calculations on distributed arrays
are provided in order to facilitate the development of the
parallel SPMD code.

2 TOP2 Structure

The overall functionality of TOP2 can be subdivided into
three basic phases: program analysis and annotation; code
generation; distributed program execution

The resulting structure of TOP2 is depicted in Fig. 1.

Analysis and Annotation

The annotation phase is supported by an interactive
Annotator which allows the user to easily insert directives
in the sequential Fortran 77 code that specify the set of
input/output variables (context data) of a subroutine to be paral-
lelized and distributions for the input/output arrays. The direc-
tives provide the information needed in the code generation
phase.

In both areas the Annotator provides a menu driven interface
for the specification thus freeing the user from syntactical pecu-
liarities of the directives. The specification of input/output vari-
ables is supported by an interprocedural analysis whereas the
decision as to which distributions are to be used is fully up to
the user.

The analysis implemented in TOP2 first determines the sets
of used and defined variables for each statement in the indi-
vidual units, i.e. a subprogram, function, or the main program.
This analysis takes equivalence information as well as common
blocks into account. The information on the statement level is

summarized for the entire unit. All parameters or global vari-
ables read or written anywhere in the unit are determined to be

input or output variables, respectively. TOP2 does not take
more precise data flow information into account.

Individual units are analyzed in postorder and thus the
effects of call statements or function references are known from
previous analysis of the referenced unit. The input/output vari-
ables of the unit are matched to the appropriate local variables
of the unit.

Due to the conservative analysis the Annotator was designed
to be an interactive tool. The results of the analysis can imme-
diately be reviewed and interactively optimized by the user.

Further user interaction in this phase allows the specification
of data distributions for the input/output arrays. The distribu-
tion scheme may be "block", "cyclic", or "replicate" in any
number of dimensions of one- or multi-dimensional arrays.
Logical processor arrays can be interactively defined as the
target for data distribution. Furthermore, a number of code
generation options may be selected in this phase.

The implementation of the Annotator is based partly on the
interprocedural data flow analysis of SUPERB, a semi-auto-
matic parallelization system developed at the University of
Bonn and the University of Vienna [GerZi 92], and partly on the
Fortran 77 parser PAFF, developed at Research Center
Juelich/KFA [Berr 89]. The final result of this phase is a
Fortran program annotated with source code directives
providing all information required for the code generation
phase.

Code Generation

The code generation phase splits up the annotated applica-
tion program into a sequential and a parallel component and
generates calls to run-time routines for the exchange, conver-
sion, and distribution of context data. The generated sequen-
tial program is complete in that it may directly be
compiled, the parallel code forms a program skeleton where
the user may include the code for the parallel program
module. Once being included in the code, changes to the

code will be preserved across multiple runs of TOP2, thus
allowing experimentation with different data distribution
schemes, communication methods, debugging options, or
varying numbers of PEs. If debugging is switched on, the code
generator also produces code for the comparison of the results
obtained in the parallelized program module with those of the

original program. The implementation of the TOP2 code gener-
ator is again based on PAFF.

Execution

The execution of the distributed application is the third phase

of TOP2. Main tasks in this phase are cross-domain message
passing, data distribution and data merging, data conversion,
and result comparison. All these tasks are performed through
run-time routines. The cross-domain message passing allows to
address individual PEs from the sequential system. Two alter-

Figure 1: TOP2 Structure

CUG 1995 Spring

 Proceedings

299

native implementations are realized at present: The first uses
shared files for communication, providing good portability
across a number of hardware platforms but limited perfor-
mance. The second implementation is based on UNIX
sockets, still a fairly portable solution yielding better perfor-
mance.

3 Source Code Directives

Source code directives are used for communication between

the TOP2 Annotator and the code generator, thus reflecting all

functional details of TOP2. Normally there will be no need for
a user to directly insert or modify directives. This is also

possible, however, and provides the potential of using TOP2 as
a batch tool.

The general form of TOP2 directives is CKFA$

keyword
[value]

. The following keyword/value pairs are currently

recognized by TOP2:
IN

variable_list

OUT

variable_list

INOUT

variable_list

PROCESSORS

procspec_list

DISTRIBUTE

distspec_list

N$PROC

number

DEBUG
STARTSTOP

start [stop]

The IN, OUT, and INOUT directives define variables
and arrays that are input or output for the parallel program
segment.

Variable_list

 is a blank- or comma-separated list of
variable names.

The PROCESSORS directive defines one- or multi-dimen-
sional logical processor arrays used for data distribution.

Procspec_list

 is a blank- or comma-separated list of processor
specifications defining the size and shape of each processor

array. TOP2 requires that all defined processor arrays be of the
same size so that a proper mapping of logical processors onto
the physical PEs is possible. The size of each processor array
must be defined statically, i.e. it must be known at
compile-time. The use of symbolic constants (PARAMETER
constants), however, is possible and is strongly recommended.

The DISTRIBUTE directive defines the data distribution
policy for one or more arrays. Distspec_list is a list of distribu-
tion specifications, each defining the distribution policy for one
array and optionally the processor array to be used as the target
for data distribution.

N$PROC, finally, allows to specify a default for the
number of processing elements to be used for data distri-
bution, and DEBUG and STARTSTOP are directives used for
the control of debugging.

Figure 2 shows some examples of typical source code direc-
tives.

PARAMETER (IP = 8)
CKFA$ IN A, CARRAY
CKFA$ OUT A, B, D

CKFA$ PROCESSORS P(2,IP), Q(16), RS(2,2,4)
CKFA$ DISTRIBUTE A(BLOCK,CYCLIC,*) ONTO P
CKFA$ DISTRIBUTE B(*,BLOCK,*) ONTO Q,
CKFA$* D(CYCLIC) ONTO Q
CKFA$ DISTRIBUTE CARRAY(BLOCK)
CKFA$ DEBUG

Figure 2: Source Code Directives

4 Data Distribution

The data distribution features of TOP2 are a subset of those
defined in HPF Fortran. Two important basic terms in this
respect are "block" and "cyclic" distribution. The extension of
one-dimensional distributions to multi-dimensional distribu-
tions is obtained by distributing each array dimension onto one
dimension of a multi-dimensional processor array, where the
number of distributed array dimensions must match the
number of processor array dimensions. The processor array is
then mapped onto the physical processing elements in column
major order.

Details of processor mappings and index calculations for
multi-dimensional distributions are given in [DeGer 94]. These

are the basis for the implementation of the TOP2 run-time
routines for data distribution. For most applications it will not
be necessary to directly refer to the formulae given there, since
all basic index calculations for distributed arrays can be realized
by means of the appropriate intrinsic functions that are available
at run-time in the parallel code (see section 5).

Since the data distribution is known when the parallel

program is generated

1

 the declarations of distributed arrays are
adjusted accordingly in the parallel skeleton. The new declara-
tion is equal to the shape of the largest array segment assigned
to a processor. The data declaration in the parallel program is
very similar to that in the sequential code, i.e. the structure of
COMMON blocks is maintained. If the declaration of an array
is dependent on some context data, e.g. adjustable arrays,
memory is allocated dynamically in the main program.

5 Intrinsic Functions for Index Calculations

TOP2 provides a set of intrinsic functions that facilitate
index calculations on distributed arrays and, thus, supports the
user in writing the SPMD code for the parallel portion of the
application code. This set of routines also includes functions
for the inquiry of array, processor array, or distribution proper-
ties in the parallel code. The described functions are 'intrinsic'
in that they are directly related to the distribution scheme

chosen during the interactive phase of TOP2, i.e. informa-
tion from this phase is automatically passed to the intrinsic
functions.

In order to allow for the utilization of the TOP2 intrinsic
functions even if an application has been entirely parallelized

1. The code is generated for a fixed number of processors.

300

CUG 1995 Spring

 Proceedings

and ported to the parallel machine (and, thus, should be

independent of TOP2), the implementation of these functions
follows a two-level procedure:

• Level-one routines collect all information on arrays,
processor arrays, and distributions and store them in an

internal data base. As long as TOP2 is used, these routines
are automatically called in the parallel program for all rele-

vant distribution items. If the TOP2 intrinsics are to be

used separately from TOP2, however, the level-one routines
have to be explicitely called in the user code.

The following routines are available at level one:

CALL TOP2_DEF_PROC(proc_phd$,dim,d)

CALL TOP2_DEF_ARRAY(array_ahd$,dim,bounds)

CALL TOP2_DEF_DIST(dist_dhd$,proc_phd$,
array_ahd$,dim,d)

CALL TOP2_UNDEF_PROC(proc_phd$)

CALL TOP2_UNDEF_ARRAY(array_ahd$)

CALL TOP2_UNDEF_DIST(dist_dhd$)

• Level-one routines return a handle for each array, processor
array, and distribution that is defined. These handles are
passed to the level-two routines that implement the actual
index calculations for the thus identified items.

When used with TOP2, the naming convention for handles is

such that TOP2 appends a suffix _phd$ to each processor
name (thus a processor array PROC may be identified
through the handle PROC_phd$). Respectively, _ahd$ is
appended to each array name and _dhd$ to the name of each
array distributed onto a given processor array.
Level two contains the following routines:

CALL TOP2_GET_OWNER(dist_dhd$,inx,own)

CALL TOP2_GET_LOCAL(dist_dhd$,gx,lx)

CALL TOP2_GET_GLOBAL(dist_dhd$,own,lx,gx)

CALL TOP2_GET_RANGE(dist_dhd$,owner,
low,high,inc)

CALL TOP2_GET_SHAPE(dist_dhd$,owner,
low,high)

CALL TOP2_GET_PROC(proc_phd$,node,inx)

CALL TOP2_GET_NODE(proc_phd$,inx,node)

CALL TOP2_GET_ALLNODES(proc_phd$,nodes)

CALL TOP2_GET_PSHAPE(proc_phd$,dim,inx)

CALL TOP2_GET_ARRSHAPE(arr_ahd$,dim,low,high)

CALL TOP2_GET_DIST(dist_dhd$,proc_phd$,
arr_ahd$,dim,dist)

6 Cross-Domain Message Passing

With respect to functionality and run-time performance,

TOP2 heavily depends on the communication between the

sequential and the parallel system. Functionally, the required
communication model is that of a cross-domain message
passing, where individual processing elements of the parallel
machine can be addressed, such that sections of distributed
arrays can be directly exchanged between the sequential and the
parallel program modules. Since, in general, the sequential and
the parallel machine will have a different system architecture,
there is a need for implicit data conversion during communica-

tion. Generally, TOP2 uses the External Data Representation
(XDR) format for system independent data representation [Sun
90]. On Cray T3D, proprietary conversion routines are used for
the conversion between Cray and IEEE data format.

Two alternative solutions have been realized in the current

implementation of TOP2, one using shared files, the other
UNIX sockets for communication.

The protocol for communication via shared files is imple-
mented through a fairly simple and robust mechanism: One file
is used per addressed PE for each communication direction. An
additional lock file ensures proper synchronization of read and
write operations on the sequential and the parallel machine.
Fig. 3 shows the principles of operation for communication via
shared files.

The protocol for communication via UNIX sockets is more
complex (Fig. 4). The sequential communication partner is
implemented as a communication client, the parallel partner as
a server. As there is a need to address individual PEs,

n

 commu-
nication ports are required for communication, where

n

 is the
number of PEs. The first handshaking between server and client
is realized via a fixed port, called the command port. This port
is used to exchange the port identifiers of the

n

 dynamically
allocated data ports that carry the actual data transfer. The
command port is only used for a short period of time and, thus,

Figure 3: Protocol for Communication via Shared Files

CUG 1995 Spring

 Proceedings

301

may be shared by multiple TOP2 applications. The data ports,
on the other hand, are exclusively dedicated to a single applica-
tion. In order to ensure that only valid client/server pairs are
connected, a password mechanism is used during communica-
tion setup. The password is automatically generated during
code generation.

7 Debugging

An important feature of TOP2 is its ability to automatically
check the correctness of the results computed in the parallelized
program module. If debugging is switched on, the control and
data flow during execution of the distributed application is
slightly different from the normal case (Fig. 5). In this case,
not only the parallelized program module is executed, but
redundantly also the original sequential module. After execu-
tion, the results of both components (all variables that are
declared to be output) are compared. Integer, Logical, and
Character variables are compared for identity, Real, Double
Precision, and Complex variables are compared for equality
within a certain allowed relative absolute error. Approximately
two deviating decimal digits are allowed due to round-off errors
in the current version.

If the results of the sequential and the parallel program

modules do not match, the TOP2 run-time system issues error
messages showing the name of the involved variable (for arrays
also the global array index), the PE number, and the computed
result of the sequential and the parallel module.

If non-distributed arrays or variables are declared to be

output, TOP2 checks if all PEs redundantly return the same

result. If not, a warning message is displayed. In either case,
only the result of PE zero is copied back to the sequential
program.

8 Conclusion

Experiences with application programs have shown that

TOP2 is reasonably suited to be applied to the parallelization of
big application codes. Yet, in order to increase its flexibility
and usefulness, some improvements can be made. A key

feature of TOP2 is its ability to perform run-time data distribu-
tion across the network according to user-specific directives.
The currently implemented distribution schemes form a subset
of the HPF data distribution features. However, alignment of
data is not supported. For a number of applications the imple-

mentation of this feature could improve the ease of use of TOP2

and also the efficiency of the resulting parallel code. In other
cases, the provision of overlap areas might be profitable as well.

For the parallelization of complete applications it will be
essential to parallelize several modules one after the other and
to finally combine them together. In the current version of

TOP2, this is not directly supported. Instead, the user has to

apply TOP2 to each module and then manually combine all
parallelized components. A better solution will be, to allow for
the parallelization of multiple modules and provide a sched-
uling mechanism that executes the proper parallel module
at run-time according to the control structure of the sequential
program. This mechanism would also make the parallelization
of nested modules easier, a prerequisite for the incremental
parallelization of entire applications.

References

[Berr 89]R. Berrendorf,

Der FORTRAN-Parser PAFF als
wiederverwendbares Modul fuer Programmier Tools

, Research
Centre Juelich, Technical Report, Jul-Spez-537, 1989

[DeGer 94]U. Detert, H.M. Gerndt,

TOP2 Tool Suite for
Partial Parallelization, Version 3.01 User's Guide

, Research
Centre Juelich, Internal Report, KFA-ZAM-IB-9418, 1994

Figure 4: Protocol for Communication via Sockets

Figure 5: Program Structure with Debugging

302

CUG 1995 Spring

 Proceedings

[GerZi 92]H.M. Gerndt, H.P. Zima,

SUPERB: Experiences
and Future Research

, In: Languages, Compilers and Run-time
Environments for Distributed Memory Machines, Editors: J.
Saltz, P. Mehrotra, North-Holland 1992, pp. 1-15

[HPF 93] HPFF,

High Performance Fortran Language
Specification

, High Performance Fortran Forum, Version 1.0,
Rice University Houston Texas, May 1993

[MWW 92]M. Mihelcic, H. Wenzl, K. Wingerath,

Flow in
Czochralski Crystal Growth Melts

, Bericht des Forschungszen-
trums Juelich, No. 2697, ISSN 0366-0885, December 1992

[Sant 91]M. Santifaller,

TCP/IP and NFS Internetworking in
a UNIX Environment

, Addison-Wesley 1991
[Sun 90]Sun Microsystems, Inc.,

Network Programming
Guide

, Part No. 800-3850-10, 1990

