

CUG 1995 Spring

 Proceedings

309

The Cray Research CRAFT-90
Programming Model

Tom MacDonald

, Compiler Group, Cray Research, Inc., Eagan, MN

ABSTRACT:

In their current Fortran product CF77™, Cray Research, Inc. has defined a
Fortran based programming model for the Cray T3D™ system that allows programmers to
specify both data sharing and work sharing. Analysis of this programming model identifies key
language features to be retained and others that should be eliminated. Because future Fortran
programming directions are based on CF90™, this analysis helped determine how to refine and
improve the model for CF90™.

1 Introduction

The Cray Research, Inc. (CRI) MPP Fortran Programming
Model, CRAFT-77, defines a feature rich implementation that
caters to a diverse programming community still exploring how
to best exploit a relatively new technology called massively
parallel processing. Analysis of this initial implementation
allowed CRI to draw some conclusions about the effectiveness
of the CRAFT-77 extensions. These conclusions are used in an
ongoing decision making process to determine what features to
retain, change and eliminate in a follow-on implementation
called CRAFT-90. The final CRAFT-90 features will be imple-
mented in the CF90 product for the next generation MPP, the
Cray T3E™ system. There is still further refinement needed
before a final language finished.

2 Architecture Assumptions

Some assumptions about the underlying hardware architec-
ture are present in CRAFT-77 and remain in CRAFT-90. The
first assumption is that the architecture is a Multiple Instruction
Multiple Data (MIMD) parallel architecture. These architec-
tures use a network to combine several general purpose
Processing Elements (PE) that are capable of executing their
own separate programs containing their own data. MIMD archi-
tectures require synchronization primitives to control commu-
nication and coordination among the PEs.

These programming models assume that each PE has its own
privately accessible memory module and other accessible
memory modules that are

remote.

Remote references traverse
an interconnection network to some uniquely identifiable
memory on the network. This is called a

distributed memory

system. A high speed interconnection network is critical to
providing high performance.

Although the memory system is physically distributed across
the PEs, there is architectural support for viewing all memory
systems as a

global address space

with nonuniform access time.
The architecture also provides a

memory latency tolerance

feature that decreases the marginal cost of referencing a block
of remote memory locations. This allows prefetching of data for
use later in a computational operation, making it easier to hide
the latency associated with remote references.

Finally, the architecture provides the necessary primitives
for high level synchronization support.

3 Explicit Communication Libraries

There are really two different styles of programming avail-
able with the CRI MPP Fortran Programming Model. The first
style is

explicit communication

defined by a set of library func-
tions used for communication and synchronization. The PVM
message passing and the shared memory library

(SHMEM)

are
two explicit communication libraries supported on the Cray
T3D.

Good progress in portable, high performance, parallel
programming has been made with the

de facto

message-passing
standard, PVM. MPI message-passing is a likely successor.
CRI's SHMEM library provides asynchronous, low latency, and
high bandwidth

get

and

put

operations that directly support the
globally addressable memory of the Cray T3D. This means the
SHMEM library routines typically offer higher performance
than PVM.

A pure message passing program does not require a global
address space because communication is synchronized through
a library. All communication must be explicitly coordinated
within the application with one PE sending data and another PE
receiving. The SHMEM library routines are able to provide
explicit communication through globally accessible variables.
A single PE is able to both store (

-SHMEM_PUT

) and load

(SHMEM_GET)

data associated with another PE without anyCopyright © Cray Research Inc. All Rights Reserved

310

CUG 1995 Spring

 Proceedings

assistance from the other PE. Synchronization is explicitly
placed in the program before the transmitted data is referenced.

Since programming with explicit communication can be
tedious, CRAFT-77 was defined to permit implicit communica-
tion through shared variables. Both implicit and explicit
communication are permitted in the same program.

4 CRAFT-90

CRAFT-90 maintains the same look and feel as CRAFT-77
in that a global address model, data distribution, and work
sharing are major components of both implementations. Both
implementations employ a Single Program Multiple Data
(SPMD) execution model that permits explicit communication
styles and implicit global address styles to be combined in a
single program. The execution model, therefore, is the same for
both styles of communication, and encourages the user to
experiment with using both of them.

CRAFT-90 retains the notion of shared arrays that are
distributed across the processors, and allows each dimension to
be distributed independent of the others. Some of the data distri-
bution features available in CRAFT-77 have been removed
from CRAFT-90. An important enhancement to CRAFT-90 is
the elimination of the requirement that distributed array extents
be a power-of-two. The power-of-two restrictions in
CRAFT-77 are too restrictive and prevent many users from
effectively using CRAFT-77.

The work sharing constructs have been retained including
the

DOSHARED

directive and array syntax involving shared
arrays. The Fortran 90 array intrinsics (e.g.,

CSHIFT)

still
accept shared array arguments.

5 N$PES and MY_PE

There are two special identifiers supported in CRAFT-77,

N$PES

and

 MY_PE.

Both of these identifiers are retained in
CRAFT-90. The identifier

N$PES

is

a special constant whose
value is the total number of PEs assigned to the execution of the
program (which is also the total number of tasks). It may be
used most places an integer constant is required. The

N$PES

feature allows data structures, and thus the size of the problem
being solved, to scale with the number of PEs assigned to the
program.

The Fortran standard requires constants in some situations.
The following are some Fortran statements that require constant
expressions along with a comment field indicating if special

N$PES

constant is allowed in that statement.

PARAMETER (P=N$PES, Q=N$PES/2+4) !

OK

DIMENSION A(100, N&PES) !

OK

CHARACTER *(2*N$PES), CHVAR !

Error

INTEGER IX(N$PES), IY(N$PES) !

OK

DATA IX /N$PES*N$PES/ !

Error

Z = (NPES,NPES) !

Error

This shows that the

N$PES

constant is not allowed on

CHARACTER or DATA

statements; nor can it be used in a

complex constant. It is supported on

PARAMETER

and

DIMENSION

statements.
In order to support a general model, the value of

N$PES

does not need to be fixed at compile time. This flexibility is the
reason the above restrictions are imposed on constant expres-
sions involving the

N$PES

constant. The value of

N$PES

can
be fixed at compile, link, or execution time. If fixed at execution
time, the program is automatically re-linked just prior to execu-
tion.

Each

task

executing within a program has a unique identifi-
cation. (There is a one-to-one correspondence between tasks
and PEs.) The name given to each task is referenced by using
the intrinsic function

MY_PE()

.

It evaluates to an integer value
between

0

and

 N$PES-l

inclusive. It can be used anywhere an
intrinsic function is permitted.

6 Data Objects

Data obiects are assigned to storage locations on the distrib-
uted memory modules associated with each PE. They include
variables, common blocks, and dynamically allocated stack and
heap space. The global address model supports two additional
attributes for data objects. Data objects are either

private

or

shared.

CRAFT-90 retains these two additional attributes. Data
distributions allow programmers to distribute their data objects
in a variety of ways. These data distribution features can help
increase performance by decreasing the number of remote
references, and by increasing

locality,

that is, increasing the
number of references local to a PE.

Private data is replicated on all tasks. Each executing task
owns its own copy of the data object. The default attribute is the
private attribute. All data objects are assumed to be private
unless explicitly declared otherwise. Variables may also be
explicitly declared private with the following directive:

CDIR$ PE_PRIVATE

var

l

,

var

2

,

...,

var

n

The directive is named

PE_PRIVATE

to avoid confusion
with Fortran 90's notion of private to a module. In this paper, the
term

private is

used to mean private to a task or PE. In
CRAFT-77, a private data object can only be referenced by the
task that owns it. A reference to a private data object is, there-
fore, never a remote reference.

This restriction is being removed in CRAFT-90. A private
data object can be referenced remotely if the base address of the
data object is consistent across all the PEs. Additional features
or semantics need to be defined to help users guarantee consis-
tent addressing for specified private data objects.

6.1 Shared Data Objects

A shared data object can always be referenced by any task.
Shared data is not replicated, in that there is only one data object
shared by all tasks. Shared data objects must be declared as
such, and can be distributed across all of the PEs executing the
program. Although entire common blocks cannot be distrib-
uted, the individual entities within a common can. Similarly,

CUG 1995 Spring

 Proceedings

311

local variables and dummy arguments can also be distributed.
The one exception is entities declared within

blank common
blocks,

because the size of these data objects can expand.
CRAFT-77 allows different dimensions of a shared array to be
distributed differently. The declaration of a

dimensionally
distributed

array specifies the distribution for each dimension.
Each dimension is distributed as if it were independent from all
other dimensions. Dimensional distributions are intended to
increase the locality of data references by providing control
over the way elements of an array are distributed.

CRAFT-90 retains the dimensional distribution capability
but does not provide all of the generality of CRAFT-77. Little
used features and those features that are not performance
oriented have been eliminated. The major feature being added
is the removal of CRAFT-77's power-of-two limitations for
array extents. The power-of-two requirements in CRAFT-77
are too restrictive, and too big an impediment to using CRAFT
for many applications.

The following list shows the dimensional distributions
supported in CRAFT-77.

:BLOCK(N)

a

block

distribution where

N

 contiguous ele-
ments are in each block and each PE owns the
same number of blocks,

:BLOCK

a

block

distribution where each PE owns exactly
one block of contiguous elements, and

:

the

degenerate

distribution where each PE owns
an entire dimension (i.e., not distributed).

From the above list, the

 :BLOCK(N)

distribution has been
removed from CRAFT-90 because it can introduce lower
performance. The lower performance is a result of the compli-
cated addressing involved with referencing a particular remote
element from an array distributed

:BLOCK(N),

and the
increased complexity of locality analysis. This lower perfor-
mance resulted in few users willing to use this distribution
method.

The following example shows a single dimensioned array
that is distributed with a :

BLOCK

 distribution across 4 PEs.

REAL X(20)
CDIR$ SHARED X(:BLOCK)

The

:BLOCK

distribution is retained in CRAFT-90.
The degenerate distribution allows an entire dimension to be

assigned to one PE. This is useful when, for example, it is bene-
ficial to assign an entire row or column of an array to one PE.
For example:

REAL Y(3,20)
CDIR$ SHARED Y(:,:BLOCK)

declares the first dimension to always reside on a single PE. The
following figure shows this distribution across four PEs.

The above example declares a “block” assigned to each PE.
It is also possible to have just one column assigned to a PE with
the following declaration:

REAL Z(100,N$PES)
CDIR$ SHARED Z(:,:BLOCK)

Since this declares the first dimension to be degenerate, and
the second dimension's size to be the number of PEs, each PE is
assigned a column of array

z

.
The degenerate distribution method is also retained in

CRAFT-90.

6.2 Geometry and Weights

The concept of

geometry

in this model is an abstraction of
the dimensional distribution that simplifies the maintenance and
declaration of several arrays with similar dimensional distribu-
tions. Change a single

GEOMETRY

declaration, and the
distribution of all arrays distributed according to that geometry
are changed automatically when the program is recompiled. It
is similar, in some regards, to the

typedef

declaration in C. The

GEOMETRY

directive is also retained in the CRAFT-90
implementation.

The following example demonstrates how to declare a geom-
etry.

CDIR$ GEOMETRY G(:BLOCK, :BLOCK)
REAL A(8,8), B(8,8)

CDIR$ SHARED (G) :: A, B

312

CUG 1995 Spring

 Proceedings

The declaration of the geometry

G

 declares a distribution
that can be used to distribute multiple arrays in the same way.
In this example, the arrays

A

 and

B

 are declared to have the
distribution specified by

G

. The following figure shows the
distribution for these arrays across 16 PEs.

The CRAFT-77 implementation also supports the concept of

weights

that allows some control over how many processors are
assigned to each distributed dimension. A weight is an integer
assigned to a distribution that can be used as a PE ratio. For
example:

REAL C(4,8)

CDIR$ SHARED C(l:BLOCK, 2:BLOCK)

recommends that twice as many PEs be assigned to the second
dimension as are assigned to the first. The weight specifiers are
not being carried over to CRAFT-90 because they are not used
very often in CRAFT-77, and sometimes confuse users when
this "recommendation'' was not honored by the compiler. By
default, the compiler will determine how many PEs are
assigned to each distributed dimension. CRI will explore
providing a different mechanism that allows the user finer
control over how processors are assigned to array dimensions.

6.3 Data Mapping Functions

Several data mapping functions are supported in CRAFT-77
that provide the user with low level access to the distribution
mechanism assigned to a shared array. The data mapping intrin-
sics are:

BLKCT

which returns the number of blocks of
elements assigned to a PE,

LOWIDX

which returns the lowest
index for a particular block,

HIIDX

which returns the highest
index for a particular block,

HOME

 which returns an integer
that represents the processor on which a shared element resides,
and PES which returns an integer that represents the number of
PEs assigned to a particular dimension. The data mapping
intrinsics are also supported in CRAFT-90, because low level
access to shared arrays helps blend the implicit programming
style with the explicit styles.

7 Subroutines

The CRAFT-77 implementation is based on the principal
that the efficiency of the code generated in a routine is depen-
dent on the available information, and the programmer is
allowed to specify different amounts of information. Additional
directives and semantics were implemented in CRAFT-77 to
make subroutine invocations more general. Much of this gener-
ality is not supported in CRAFT-90.

There are additional language features in Fortran 90 not
present in CRAFT-77 (e.g., allocatable arrays,

POINTER

attribute, and derived types). The relationship between these
new features and the CRAFT-90 definition requires further
study. Furthermore, Fortran 90 introduces the notion of explicit
interfaces for subroutines. Explicit interfaces expose the decla-
rations of dummy arguments to the compiler for use at call sites,
and are required when certain types of arguments are passed
(e.g., assumed-shaped arrays). The final definition of
CRAFT-90 will also use explicit interfaces when some types of
shared arguments are passed.

7.1 Unknown Distributions

With CRAFT-77, a subroutine's dummy arguments can be
declared to be shared, private, or

unknown.

When the declara-
tion is shared or private, the declaration is used to generate more
efficient code for references to those arguments.

However, a dummy argument may have its distribution
declared as being unknown with the following directive:

CDIR$ UNKNOWN

arg

l

,

arg

2

,

..,

arg

n

The motivation for the

UNKNOWN

distribution was to
allow the definition of subroutines that accept both shared and
private arguments. This makes library interfaces easier to
specify. Similarly, a dummy argument can be declared as both
unknown and shared with the following directive:

CDIR$ UNKNOWN_SHARED

arg

l

,

arg

2

,

..,

arg

n

Dummy arguments that are both unknown and shared accept
a shared argument, but the distribution is not known. Again, the
motivation was to simplify the specification of library inter-
faces.

The disadvantage of unknown distributions is unacceptably
slow references to these arguments. The increased overhead is
due primarily to the general address calculation used (involves
significantly more instructions), and the adverse impact on
locality analysis. Locality analysis suffers from the absence of
available distribution information. Finally, additional overhead
has been added to subroutine calling sequences to support these
unknown distributions. This overhead had some affect on all
routines because a Shared Data Descriptor (SDD) is passed to
describe the shared data. This unacceptable overhead results in
very little usage of the unknown distributions, but the effects
from passing around the SDD are still there. It does not appear
worthwhile for CRAFT-90 to support either the SDD or the

CUG 1995 Spring Proceedings 313

unknown distributions. This simplification of the argument
passing mechanism also permits a more efficient entry and exit
sequence.

Finally, the IS_SHARED intrinsic function is present in
CRAFT-77 just to check unknown arguments. This intrinsic is,
therefore, not needed in CRAFT-90.

7.2 Implicit Redistribution
With CRAFT-77, shared dummy arguments may not match

the exact distribution of the corresponding actual arguments
passed into a routine. In this case the CRAFT-77 semantics
dictated that shared arguments be redistributed to the specified
distribution of the dummy argument upon entry, and redistrib-
uted back to their original distribution upon exit. These implicit
redistribution semantics may cause excessive overhead, and are
rarely exploited by programs They are not planned to be carried
over to the CRAFT-90 implementation.

Additional language features called trusted arguments were
implemented in CRAFT-77 to eliminate much of this unwanted
overhead. Since implicit redistribution semantics are disap-
pearing, the trusted arguments are no longer needed.

7.3 PE_RESIDENT Arguments
One additional attribute CRAFT-77 supports for dummy

arguments is the concept of a shared argument always being
accessed locally. An argument that is specified on a
PE_RESIDENT directive is an assertion by the programmer
that all references to this argument are local private references.
Undefined behavior occurs if the assertion is not adhered to by
the user.

The PE_RESIDENT directive is not being carried over to
CRAFT-90 because it only applies to dummy arguments. All
too often users wanted the assertion to apply to a particular loop
instead of an entire routine. Instead, the directive is being
replaced with a loop level feature that gives users finer control
over when and where shared arrays are referenced locally (see
Shared Loops for more information).

7.4 Shared-to-Private Coercion
When you pass a shared array into a routine that declares the

corresponding dummy arguments as PE_PRIVATE, you are,
in effect, passing only those values which reside on the current
PE. This is called shared-to-private coercion. This means that
the called routine must declare the array to be the same size as
the number of elements that reside on that PE. For example:

REAL D(2048,4000)
CDIR$ SHARED D(:BLOCK,:)

If array D is passed to a routine that declares the corre-
sponding dummy argument as PE_PRIVATE then each PE
sees an array of the shape:

REAL D_LOC(2048/N$PES,4000)
CDIR$ PE_PRIVATE D_LOC

and each PE can reference the data as a local private array.

Shared-to-private coercion provides an easy way to mix both
CRAFT and explicit communication in the same program. With
shared-to-private coercion a distributed array can be operated
on locally, with communication occurring through explicit
library interfaces. This useful feature is retained in CRAFT-90
and the elimination of the SDD simplifies the conversion to a
local address. The ability to mix high level implicit communi-
cation language features with low level explicit communication
gives users the ability to tune performance critical areas of a
program with the fine control available through these explicit
communication interfaces.

7.5 Parallel Execution
CRAFT programs initially begin executing in a parallel

region on every PE (same as a message passing program). The
program remains in a parallel region (with all tasks executing)
until a special directive is encountered that delineates a sequen-
tial region. The syntax for this directive is:

CDIR$ MASTER

When this directive is encountered, all tasks, except the
master task, wait at the end of the sequential region for the
master task to finish executing the executable statements within
the sequential region. The end of a sequential region is delin-
eated by the following directive:

CDIR$ END MASTER

Every program unit that contains a MASTER directive must
also contain a matching END MASTER directive. The
MASTER and END MASTER directives are used extensively
and are being retained in CRAFT-90.

8 Work Sharing

Work sharing is achieved by executing a shared loop or
array syntax statements that reference shared data within a
parallel region. The CRI MPP Fortran Programming Model
defines both shared and private loops. Both shared and private
loops are retained in CRAFT-90.

8.1 Private Loops
Private loops are executed in their entirety by any task that

invokes them. No work is shared with other tasks. Private loops
are defined, at the task level, as having exactly the same seman-
tics as loops in standard Fortran. Iterations are executed in the
Fortran-specified order, which implies that induction variables
(which should be declared PE_PRIVATE) retain the behavior
they have in sequential Fortran programs. No special syntax is
required to specify a private loop; it is the default.

8.2 Shared Loops
Shared loops specify the behavior of all tasks collectively,

and define the behavior of individual tasks only implicitly.
They permit work specified in the loop to be shared across all
tasks. Shared loops do not guarantee the order in which itera-

314 CUG 1995 Spring Proceedings

tions are executed. The lack of a defined ordering allows the
implementation to execute iterations concurrently.

One form of shared loop uses the DOSHARED directive to
indicate the loop can execute in parallel. It supports an
aligned-on mechanism that places iterations on the processor
where elements for that iteration are stored, thereby increasing
locality. The programmer is responsible for determining and
specifying the proper alignment.

The syntax for the aligned-on distribution directive is:

CDIR$ DOSHARED (Il,I2,...,In) ON array-ref

The array-ref must be a subscript expression involving the
specified loop control variables (Il, I2, etc.) and a shared array.

The proper choice of an iteration alignment can often
provide a high degree of locality when references in the itera-
tion are close together. The aligned-on distribution mechanism
is designed to place iterations within tasks on PEs where the
references reside. For example, suppose that arrays X and Y
have the same dimensionality, the same size, and the same
distribution. The following loop:

CDIR$ DOSHARED (I) ON X(I)
DO I = 1, N

Y(I) = D * X(I) + Y(I)
END DO

is distributed such that each iteration I executes on the processor
where X (I) resides. Since Y (I) resides on the same PE, all
references are completely local.

The DOSHARED loop is being enhanced to permit a speci-
fication of which arrays are guaranteed to be local references
within the loop. During the execution of the loop, all references
to these arrays, for a particular iteration, are made by the PE
executing that iteration. The exact syntax has not been finalized.
This capability was requested by many users, and is replacing
the PE_RESIDENT directive.

9 Array Syntax

A subset of the Fortran 90 array syntax notation is supported
in CRAFT-77. Array assignment statements are highly parallel
operations. Unlike DOSHARED loops, their iteration distribu-
tion is controlled completely by the compiler. The implementa-
tion chooses the iteration distribution that exercises the greatest
locality in its execution. For example, given the declaration:

CDIR$ GEOMETRY G(:BLOCK)
REAL A(100), B(100), C(100)

CDIR$ SHARED (G) :: A, B, C

The array syntax assignment

A = B + C

is equivalent to:

CDIR$ DOSHARED (I) dist
DO I=1,100

A(I) = B(I) + C(I)
ENDDO

where dist is a loop distribution mechanism chosen by the
compiler.

Several array intrinsic functions that are part of the Fortran
90 standard are supported in CRAFT-77, and retained in
CRAFT-90. Some of the more commonly used intrinsics are:
ALL, ANY, COUNT, CSHIFT, DOT_PRODUCT,
EOSHIFT, -MATMUL, MAXLOC, MAXVAL, MINLOC,
MINVAL, PRODUCT, SUM, and TRANSPOSE.
CRAFT-77 also supports the WHERE statement with shared
arrays, and is retained in CRAFT-90.

10 Synchronization Primitives

CRAFT-90 supports the same set of synchronization mech-
anisms as CRAFT-77. These include barriers, locks, critical
regions, and events.

Barriers are a fast way of synchronizing all tasks at once.
They are implicitly included at the end of every shared loop
(including array syntax statements involving shared arrays) and
after allocating shared automatic arrays. They can be explicitly
included anywhere in a program with the syntax:

CDIR$ BARRIER

Critical sections (a.k.a., critical regions and guarded
regions) are a specialized form of lock that do not require the
use of some convention to insure proper synchronization. They
serialize access to a particular section of code rather than access
to some data object. A critical section prevents more than one
task from executing concurrently within the critical region. The
syntax for a critical section is:

CDIR$ CRITICAL
CDIR$ END CRITICAL

Every CRITICAL directive must have a properly nested
matching END CRITICAL directive within the same program
unit.

Vector updates are assignment statements that modify an
array reference which has an element of indirection. An
example of this is:

X(IX(I)) = X(IX(I)) + V(I)

The concern is that IX may contain values (i.e., indices) that
occur more than once. When this is the case, executing the
update in parallel can cause race conditions. The Fortran 90
Standard does not address this problem with array syntax state-
ments such as:

X(IX) = X(IX) + V

except to say that it is an error if any of the elements of the index
vector IX have the same value. Therefore, a directive is
supported that directs the compiler to ensure that multiple

CUG 1995 Spring Proceedings 315

updates to a single shared element occur atomically. The vector
update executes as parallel as possible otherwise. The syntax is:

CDIR$ DOSHARED (I) ON IX(I)
DO I=l,N

CDIR$ ATOMIC UPDATE X(IX(I)) = X(IX(I)) + V(I)
ENDDO

The directive only applies to the assignment statement
immediately following the directive and the assignment must be
to a shared variable, including scalars.

Locks are a basic and primitive synchronization method that
are generally used to serialize access to some piece of data.
Locks that are set to zero are initialized as unlocked. Lock oper-
ations are supported by three routines as follows:

CALL SET_LOCK(lock)
CALL CLEAR_LOCK(lock)
L = TEST_LOCK(lock)

Events provide a style of program synchronization that is
different from locks. Whereas locks cause task suspension on
setting the lock, events have an explicit blocking routine.
Events are typically used to record the state of a program's
execution and communicate that state to other tasks. Because
events have no atomic operation to set a lock and block on
conflict, events are not easily used to completely serialize
access to data. Events are supported by four routines as follows:

CALL SET_EVENT([event])
CALL WAIT_EVENT([event])
CALL CLEAR_EVENT([event])
L = TEST_EVENT([event])

The argument to the event routines is optional. If no argu-
ment is supplied then a hardware mechanism called the eureka
is used for event communication.

11 Conclusions

There are multiple forces that apply pressure to the definition
of a programming model for a massively parallel system. Some
programmers want very high level language features, others
want very low level primitives that allow them to control every

aspect of the program's execution. Some want a very MIMD
model with extensive synchronizations, others want the imple-
mentation to "figure it all out" for them. The CRAFT-77 model
is feature rich, because of this divergence of opinions in the user
community over what is the best way to program massively
parallel systems. Using the experiences gained from
CRAFT-77 on the Cray T3D, CRI is defining an enhanced
version, CRAFT-90, that is based on CF90 and will be released
on the Cray T3E system. The goal for CRAFT-90 is a more
usable language for which good performing code can be gener-
ated.

CF77, CF90, Cray T3D, and Cray T3E are trademarks of
Cray Research, Inc.

References

1. D. Pase, T. MacDonald, A. Meltzer, MPP Fortran Programming Model,
Cray Research, Inc., Eagan Minnesota, 1994.

2. Cray MPP Fortran Reference Manual, SR-2504 6.2, Cray Research, Inc.,
Eagan, Minnesota, 1994.

3. CF90 Fortran Language Reference Manual, SR-3092 1.0, Cray Research,
Inc., Eagan, Minnesota, 1994.

4. CM Fortran Reference Manual, Thinking Machines Corporation, Cam-
bridge, Massachusetts, 1991.

5. G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. W. Tseng,
and M. Y. Wu, Fortran D Language Specification, Rice University, Hous-
ton, Texas, 1991.

6. P. Mehrotra and J. Van Rosendale, Programming Distributed Memory Ar-
chitectures Using Kali ICASE, NASA Langley Research Center, Hampton,
Virginia, October, 1990.

7. F. Thomson Leighton, Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes, Morgan Kaufman Publishers, San Ma-
teo, California, 1992.

8. B. Chapman, P. Mehrotra, and H. Zima, Vienna Fortran - A Fortran Lan-
guage Extension for Distributed Memory Multiprocessors, ICASE, NASA
Langley Research Center, Hampton, Virginia, 1991.

9. High Performance Fortran Forum, High performance Fortran Language
Specification, Ver. 1.0, May 3, 1993

10. Constantine D. Polychronopoulos, Parallel Programming and Compilers,
Kluwer Academic Publishers, Norwell, Massachusettes, 1988.

11. Hans Zima with Barbara Chapman, Supercompilers for Parallel and Vector
Computers, ACM Press Frontier Series, New York, New York, 1991.

