
 

CUG 1996 Spring 

 

 Proceedings

 

237

 

UNICOS/mk: A Scalable Distributed Operating System

 

Gabriel  Broner, 

 

 Cray Research, 655F Lone Oak Dr., Eagan MN 55121

 

ABSTRACT:

 

 UNICOS/mk is a distributed version of the UNICOS operating system, developed
to support future parallel Cray architectures, starting with the Cray T3E.  A distinguishing char-
acteristic of UNICOS/mk is its scalability; UNICOS/mk effectively supports large parallel ma-
chines, while it provides the image of  a single system.  This paper gives a high-level overview of
UNICOS/mk and explains in more depth how operating system scalabilty is accomplished.

 

1 Introduction 

 

UNICOS/mk is a 

 

distributed

 

 version of the UNICOS [2]
operating system.  'Distributed' means that it is capable of
supporting parallel hardware architectures with a single oper-
ating system.  

The operating system is 

 

scalable

 

, which means it is capable
of increasing its "capacity" as the system size grows.

The ability of the system to present itself as a single coherent
operating system, when running on a parallel platform is called

 

Single System Image (SSI)

 

  (For a more thorough discussion on
Single System Image in UNICOS/mk, see [3]).  

UNICOS/mk offers, at the same time, scalability and single
system image.  The result is a system which is able to support
large parallel machines, while doing it in a usable manner.

This paper continues as follows: Section 2 contains the
design goals behind UNICOS/mk; Section 3 gives a high-level
overview of the overall system architecture; Section 4 explains
how scalability is achieved, and Section 5 presents the conclu-
sions.

 

2 Design Goals

 

 The following are the design goals behind UNICOS/mk.
These were the reasons to start a new operating system project,
and the main guiding principles behind its design.

•

 

Support new Cray architectures

 

: support architectures
such as the Cray T3E and future Cray machines.  This
implies supporting parallel architectures with a large num-
ber of CPUs.

•

 

Common Operating System

 

: the same operating system
will support the various Cray architectures.

•

 

UNICOS compatible

 

: for compatibility with existing appli-
cations, the system will present the familiar UNICOS inter-
face.

•

 

Modularity

 

: to improve its reliability and maintainability
the operating system will  be more modular than traditional
"monolithic" operating systems.

•

 

Single System Image (SSI)

 

:   The multi-node operating
system will appear to the user just like one coherent sin-
gle-node operating system.

 

Scalability

 

: The operating system's ability to handle requests
will grow as the system size grows.

 

3 The Architecture of UNICOS/mk

 

Different from  traditional "monolithic" operating systems,
the UNICOS/mk system is comprised of a 

 

microkernel

 

 and a
number of 

 

servers

 

, which cooperate to provide the complete
operating system functionality.  The UNICOS/mk operating
system has been derived from the Chorus [1] and UNICOS [2]
systems.  The Chorus operating system has provided the overall
serverization scheme, the microkernel (mk), and the basis for
the UNICOS/mk Process Manager (PM).  Most other servers
have been developed from code taken from the UNICOS oper-
ating system.  Figure 1 shows the overall architecture. 

 

Figure 1:

 

 

 

The architecture of UNICOS/mk

 

• The 

 

microkernel

 

  implements the machine dependent com-
ponents, memory management, CPU scheduling and
inter-process communication (IPC).  The microkernel offers

Process
(PM)

File tty Socket Tape

Disk NetDev

Packet

Config
Info

mk

Log

 

Copyright © Cray Research Inc. All rights reserved.



 

238

 

CUG 1996 Spring 

 

 Proceedings

 

a series of abstractions (actors, threads, ports, regions),
which permit implementing the rest of the operating system
in a machine-independent fashion.

• The 

 

Process Manager

 

 provides the UNICOS interface.  It
receives all system calls; it services by itself the process
related ones, while it forwards to the appropriate server other
(e.g. I/O related) system calls.

• Other servers (in general) contain code directly taken from
UNICOS.  The UNICOS code is converted into a UNI-
COS/mk self-contained server by compiling it and linking it
with a "wrapper" library.  For example, the 

 

File Server

 

 con-
tains the UNICOS file system code, the 

 

Disk Server

 

 contains
the disk drivers, the 

 

Socket Server

 

 contains the TCP/IP code,
the 

 

Network Device Server

 

 contains the network drivers, etc.

To illustrate how the various servers cooperate to provide the
complete operating system functionality, Figure 2 shows

 

getpid

 

, as a process-related system call handled completely
by the Process Manager,  and Figure 3 shows 

 

open

 

 and 

 

read

 

,
as examples of system calls involving multiple servers.

 

Figure 2:

 

 

 

A process-related system call

Figure 3:

 

 

 

System calls involving multiple servers

 

UNICOS/mk runs on different hardware platforms.  On
single CPU or SMP machines, all of the UNICOS/mk compo-
nents run in the same address space (see Figure 4).  When servers
are in the same address space, the microkernel  is able to opti-
mize the inter-server communication, to achieve performance
comparable to that of an integrated kernel.

mk

App

PM

getpid()

App

PM

open()
read()

File

Disk

Packet

 

Figure 4:

 

 

 

UNICOS/mk on an SMP

 

When UNICOS/mk runs on an MPP machine, such as the
Cray T3E, each node runs only a portion of the operating system
servers.  Nodes that run applications only need a microkernel
and a Process Manager.  Other nodes (usually described as oper-
ating system nodes from a configuration point of view) run other
servers such as the File or Disk servers.  Figure 5 shows
UNICOS/mk on an MPP system.

 

Figure 5:

 

 

 

UNICOS/mk on an MPP

 

UNICOS/mk offers 

 

Single System Image (SSI)

 

.  This means
from a user or application developer point of view,  the system
presents itself as a coherent single system, even when the under-
lying hardware architecture may have thousands of independent
nodes.  Users can 'login' to the "system", run applications on it,
and never need to be aware of the fact that applications actually
run on different nodes of an MPP machine.  For a more extensive
discussion of Single System Image in UNICOS/mk, the reader is
encouraged to read reference [3].

mk

Application

Process
(PM)

File

tty

Socket

Tape

Disk NetDev

PacketConfig Info

mk

PM

mk

PM

mk

PM

mk

PM

mk

PM

mk

PM

mk

mk

mk

PM

mk

PM

File

Disk
Packet

PM

File

Disk
Packet

PM



 

CUG 1996 Spring 

 

 Proceedings

 

239

 

4 Scalability in UNICOS/mk

 

An important property of the UNICOS/mk operating system
is its ability to handle more requests as the system size grows.
This ability to grow, or scale, is called 

 

scalability

 

.
In the UNICOS/mk system, scalability is achieved in a

number of ways.  

 

Process-related

 

 functions scale because they
are handled by the Process Manager and the microkernel.  The
larger the machine, the more Process Managers and microker-
nels it will have.  For example, a machine with 16 processing
elements (PEs) has 16 Process Managers and 16 microkernels.
At the same time, a machine with 2,048 PEs has 2,048 Process
Managers and 2,048 microkernels, which are able to handle a
proportionally larger load. 

For 

 

File-I/O-related

 

 functions, scalability is achieved in a
different manner.  We have developed a series of solutions
which permit scaling the file I/O traffic in different ways.  The
first solution, shown in Figure 6, is 

 

Remote Mount

 

: different file
servers may service different file systems.  The result is files
using different file names are accessed via different file servers.
This solution permits, for example, separating the traffic to the

 

/bin

 

 directory, containing applications, from that of the 

 

/tmp

 

directory, containing temporary files.  Programmers can take
advantage of this parallelism, but they have to (explicitly) use
different files, in different directories.

 

Figure 6:

 

 

 

 Remote Mount

 

The second solution for file I/O scalability is the 

 

File Server
Assistant

 

.  The File Server Assistant (FSA) is a new server that
runs on every (application) node (see Figure 7).  The File Server
Assistant can be viewed as a "shadow" of the central File Server:
it basically contains the same code as the central file server, and
it is capable of processing a file server request without central
file server intervention.  Typically 

 

open

 

 requests go to the
central file server, but further 

 

read

 

 and 

 

write

 

 requests can be
handled locally by the assistant.  Current restrictions are that I/O
has to be unbuffered (raw) and well formed (aligned).

The File Server Assistant is a more interesting solution when
considered jointly with 

 

Disk Server Parallelization

 

.  A file
server can "stripe" a file system across multiple (up to 64) disk

mk

File

mk

File

mk

File

mk

File

/

/bin

/tmp

/usr

 

servers (see figure 8).  When the File Server Assistant is used
(and the central File Server is bypassed) multiple paths exist
from each application (or each PE of a multi-PE application) to
the same file system, or even the same file.  For example, in a
64-PE application every PE could be performing I/O to the same
file (different offsets), while each PE takes a different path using
a different set of servers.  Different paths to disk, without a
central point of control, make this solution scalable.

 

Figure 8:

 

 

 

Disk Server Parallelization

 

A third solution for I/O scalability is 

 

Distio

 

.  Distio is a vari-
ation of the 

 

listio

 

 system call.  Listio permits specifying
multiple read/write operations on a single system call.  The
Distio variation, permits indicating a destination PE for each I/O
request.  This permits issuing one system call resulting in
multiple actual I/O transfers destined to different PEs (see
Figure 9).

All the solutions presented here for I/O scalability can be
used together, but at the same time address different problems.
Remote Mount addresses the contention due to many programs
opening files using the same file server.  A programmer can take

mk

PM FSA

mk

PM FSA

mk

PM FSA

mk

PM FSA

mk

FSA

mk

PM FSA

mk

Disk

mk

Disk

mk

Disk
File

Packet

Packet

Packet

PM

Figure 7: The File Server Assistant

DiskDisk

Disk Disk

File



 

240

 

CUG 1996 Spring 

 

 Proceedings

 

advantage of this parallelism in an explicit fashion.  The File
Server Assistant addresses the more common contention when
all the elements of a multi-PE application access a single file at
different offsets.  Finally, Distio provides a scalable way for a
single PE to drive all of the I/O for a multi-PE application.

 

5 Conclusions

 

UNICOS/mk is a 

 

distributed

 

 operating system as it supports
parallel hardware.  It is 

 

scalable

 

, as its ability to handle requests

mk

mk

PM

APP

mk

mk

PM

APP

mk

PM

APP

mk

PM

mk

mk

mk

Disk
File

Packet

APP

Figure 9: Distio

 

can grow as the system size grows.  UNICOS/mk offers 

 

Single
System Image (SSI)

 

 when running on a parallel platform, making
it more usable for software developers, end users, and system
administrators.  This paper emphasizes the scalability aspects of
UNICOS/mk, but the strength of UNICOS/mk comes from its
ability to be a scalable operating system while maintaining the
image of a single system.

 

6 References

 

[1] Rozier M. et al, 

 

Overview of the CHORUS Distributed Operating System

 

,
USENIX Workshop on Microkernels and Other kernel Architectures, April
1992.

[2]

 

UNICOS

 

, Cray Research Publication MCPF-2580394, 1995.

[3] Broner G., 

 

UNICOS/mk: A Distributed Operating System with Single System
Image

 

,CUG 1995 Spring Proceedings.

 

7 Further Contact

 

Gabriel Broner can be reached via e-mail at
broner@cray.com


