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1 Introduction.

 

Today’s most important scientific problems require impres-
sive  and continuously increasing computing speeds. The use of
massively parallel architectures appears to offer a unique possi-
bility to achieve the computing resources needed at an afford-
able cost. However, coupled to the hardware development of
new architectures, it arises the problem of  adapting existing
codes or developing new ones for the scientific problems that
require the use of parallel computers. Furthermore,  since the
use of parallel computers will certainly become much common
in a near future,  not only the most computer demanding scien-
tific problems, but practically all disciplines in which
computing plays and important role will progress in the sense of
using parallel algorithms. Thus, parallel programming tools
which are not only efficient but also practical and easy to use are
likely to gain a widespread use in a near future. The question of
how the two virtues can better coexist in a single tool, and which
should be the main characteristics of such a tool is therefore
acute.

As a final user in writing scientific codes using different
parallel computers and programming tools, such as the Occam
language and the parallel CM Fortran90 in systems other than
Cray, and the MPP programing model for the Cray T3D, my
personal point of view about the usefulness of a programming
model is that the significance of the facility of use, debugging
and evolution of the parallel code is reinforced in front of the
efficience. To put in other words: it is not difficult to have a tool
that provides high efficiencies; what makes the great difference
between different efficient tools is its facility of use. In this
sense,  the Craft programming model is remarkable. At first
sight, it could seem to be a programming model conceived for
the non experienced user, with reasonable chances of success in
problems with some specific and somehow rigid parallelism.
It’s main usefulness would be the small changes required to
transform a serial program into a parallel one, thus allowing for
a smooth transition to the philosophy of parallel programming.
On the other hand, it seemed  to me less clear whether this
programming model could successfully and efficiently afford a
general parallel problem.  Its operation in some real examples
may give some insight with respect to this point.

Two different programming models, Craft and explicit
message passing have been used  for two different problems:

Diffusion Monte Carlo calculations, and Molecular Dynamic
simulations. The behaviour of the Craft code, compared to the
one using explicit message passing  calls,  is analyzed. It will be
shown that, contrary to the first impression, the Craft program-
ming model is sufficiently flexible to handle appropriately
almost any parallel problem.  

 

2 Diffusion Monte Carlo calculations.

 

Monte Carlo methods have achieved in the last years a high

level of accuracy in the description of atomic 
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He and 

 

4

 

He,
which constitute the most characteristics examples of quantum
liquids. In the simulation of such systems, Diffusion Monte
Carlo (DMC) algorithms solve stochastically the Schrodinger
equation in imaginary time, using an iterative method that simu-
lates an evolution  over a small time 

 

∆

 

t 

 

per iteration.  The trans-
lation of the Schrodinger equation in terms of a stochastic
algorithm defines the operations that have to be performed on
the system. From an algorithmic point of view, it implies having
a large number (

 

≈

 

500) of different copies of a classical liquid,
containing something like one hundred atoms each copy. The
behavior of the different copies is dictated by the action of the
quantum operators associated to the kinetic and potential
energy,  leading to a superposition of a deterministic and a
random change in the positions of the atoms, plus an overall
probability of the whole copy to replicate or dye.

The structure of the calculation therefore is decomposed in
separate parts:

• Local evolution of single configurations, containing a deter-
ministic part as well as a random one.

• Replication or death of configurations, depending on the
"quality" of the random component of the algorithm for a
particular configuration, compared to the average one.

The parallization of  a computation of this type is naturally
realized distributing the different configurations on the avail-
able processor elements. A parallel DMC computation using
explicit message passing will be highly efficient, provided that
a proper dynamic load balancing is achieved after the random
replication or death of configurations. This will require a
random pattern of communication similar to the one shown in
Figure 1:
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Figure 1

 

A calculation of this type enters naturally in the message
passing programming model, and a PVM-like code is expected
to show a fully satisfactory performance for this problem since

1. All operations are inherently local.

2. The user has full control over the flow of data, thus allowing
for a precise load balancing, and minimum inter-processor
communication.

One would expect then the efficiency of the message passing
program to be very close to the ideal. This expectation becomes
fully confirmed when we plot the speed-up attained using
different numbers of processors, shown in Figure 2:

Now, let us consider how a Craft code could do in a calcula-
tion of this kind. There are two major  issues to be considered: a)
locality versus inter-processor communication, and b) load
balancing. 

Related to a) , one of the characteristics of Craft is that local
operations which do not require inter-processor communication
may originate remote read or write operations, if the compiler is
not sure of it at compile time. However, in this example, the data
distribution fits exactly with the 

 

doshared 

 

loop over configura-
tions and the compiler does not succumb to this pitfall. With
respect to b) , the fulfillment of a general inter-processor
communication of the kind shown in Figure 01 is tailored with a
minimal modification of a serial code. The Craft code could look
like the program in the next column.

It is clear that the two points just considered are fully satisfied
in the Craft approach, since the compiler can recognize at
compile-time that all operations are local, and on the other hand
the irregular pattern of communication needed can be fulfilled.
One then expects a behavior similar to the one reached with

Figure 2

 

explicit message passing. The comparison of the efficiency is
shown in Figure 2. The behavior of the two approaches is fully
satisfactory in both cases, the unobservable differences  between
the two being produced only by the different rates of data trans-
mission. Now, one could figure that the success of the Craft
approach in this example is merely due to the simplicity, in terms
of parallelization, of the DMC algorithms. To gain clarity on this
point, let's consider another  relevant problem, more entangling
from the point of view of parallelization.

 

3 Molecular Dynamics Simulations

 

Molecular Dynamics (MD) simulations constitute a broad
field of research, suitable for the study of statistical mechanical
systems, ranging, say, from simple metal liquids to macro-mole-
cules in environments of biological interest. Due to the very
different systems that can be studied, the size and complexity of
the "sample" to be studied by computer simulation may vary
substantially. Typically 100 to 10,000 particles are used to
obtain relevant information. In order to readily illustrate the kind
of parallel algorithms that can be used, we will focus on the
particular type of simple model interactions described by long
range pair interactions. In this particular problem, the heart of
the calculation would consist in long sequence of elementary
updates of the system, each one involving three basic steps:

(i) Evaluation of the forces acting on each particle.

(ii) Computing the new positions and velocities, by integra-
tion of the equations of motion, and

(iii) Evaluating physical properties.

Step i) is the most consuming computer time, involving a

calculation of order n

 

2

 

,  being n the number of particles. 
In this simple example a serial MD program could look like

this:

DIMENSION  (:,:, ... , :)
CDIR$SHARED x(:,:, ... , :block(1)

c      Local evolution of npop confi g
CDIR$DOSHARED ipop ON x(1,1..., 

do ipop = 1, npop
    x(:,:, ... , in, ipop) =   

       =       f ( x(:,:,  ... , in, ipop )
end do

c Algorithm to build a new list   
c configurations taking into ac c
c the replication or death of th e
c ones:

Build nfuture(:)

c Inter-processor communicati
CDIR$DOSHARED ipop ON x(1,1..., 

do ipop = 1, npop
    x(:,:, ... , io, nfuture(ipo   

       =       x(:,:,  ... , in, ipop)
end do
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do i = 1, n-1
    do j = i+1, n
        Compute the interaction of the 
         pair (i,j)
         f(i) = f(i) + interaction(i,j)
         f(j) = f(j) - interaction (i,j)
    end do
end do

 

Before considering how one should try to parallelize this two
nested loops, let Craft try it in a naive way, just distributing the
first loop between the available processors. The speed-up
obtained is shown in the lower curve of Figure 3.

 It is clear that although the speed-up scaling  is suprising, the
starting point (the execution in a single PE) and thus all the curve
is not adequate.

One delightful solution to this problem consists in distrib-
uting the data (positions and forces) relative to the n particles in
2 N

 

PE's 

 

+ 1 groups (see Figure 4):

A complete calculation of all the pair forces over all particles
is achieved after  2 N

 

PE's 

 

+ 1 steps, each one consisting in the

 

local

 

 computation and addition by every processor of the inter-
actions between two groups of particles (in the case of the PE0
only the interactions between the two rightmost groups are
computed), followed by a subsequent communication of posi-
tions and forces. This procedure fits precisely in a message
passing code with  correct speed-up, since the two relevant
issues are satisfied:  all computations are local, and the need of
communication, although rather particular, is not excessive. In

Figure 3

Figure 4

 

fact, in Figure 3 (upper PVM curve) the efficiency of  this proce-
dure is shown to be much more satisfactory than the previous
Craft one. The question is therefore whether the Craft model
programming is flexible enough to allow a procedure of this type
to fit naturally and easily into it. 

The answer to this question is that it is equally easy to
describe (and execute efficiently)  this type of algorithm in Craft
than in PVM or any other explicit message passing tool.  A
simple way to accomplish this is setting a parallelism between an
explicit message passing code and a "subset" of Craft. In fact, all
variables and arrays in PVM are local (or private), and they have
an extra index not quoted explicitly (its processor number) that
plays a decisive part in the algorithm. An identical foothold is
achieved in Craft if one uses the same problem-decomposing
variables and arrays, declaring all index degenerate, except for
and additional one (the implicit processor number in PVM-like
codes) declared as distributed. Then the two major characteris-
tics of explicit message passing are held:

• All computations are local: a shared do loop with the loop
index standing for the PE number aligned with an array of
the type just described is known to be local by the compiler.

• Any communication required is specified by the user. When
needed, the explicit communication is specified by en
instruction like

x(:,: ... , idest) = x(:,:, ... , isource)

and this "subset" of Craft may be thought in terms of  a particular
explicit message passing model, in which the syntax has been
chosen to closely follow the fortran notation.

Following this approach, a second Craft version for this
problem has given rise to the much more satisfactory speed-up
curve shown in Figure 5.

It is clear that the Craft 2 version closely follows the ideal
scaling,  contrary to the naive preliminary version. Any differ-
ences in performance between the  Craft 2 version and a code

Figure 5
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using remote memory get/put calls or explicit message passing
is now due only to the particular implementation of the mecha-
nism responsible for the data transport. In the main point, the
correct description of the parallel algorithm, it is clear that Craft
is perfectly able to achieve its part. Furthermore, it closely
resembles a traditional get/put or message passing program, with
the additional advantage that it can be debugged, tested or run in
any conventional computer.

A supplementary amusing question arises:  despite the fact
that Craft is (or may be put) on the same foot as a PVM-like
program,  is there some feature of  a message passing program-
ming model that Craft cannot do?  The answer is that
nonblocking send or receive calls are outside the Craft possibil-
ities. However, this is not a fundamental deficiency, and the use
of parallel constructors would allow that feature. Parallel
constructors are used for example in Occam language, and run
in Transputer systems. They are most useful in allowing the
simultaneous use of the “computing” and “communicating”
hardware, and allow the user to exploit nonblocking remote
reads or writes in a very clean and comfortable style. Its transla-
tion to the Craft directives could be something like this:

 

cdir$   parallel(1)

        Essentially communication code

cdir$   end parallel(1)

c

cdir$   parallel(1)

        Essentially computation code on a 

        different set of variables

cdir$   end parallel(1)

cdir$   barrier

 

the two parallel sections tied by a common number (1 in the
example) meaning that these two parts of code can be executed
at the same time.  In principle, such a piece of code could be time
saving irrespective of whether placed in a parallel or sequential
region of the program.

Some considerations may be derived from what has been
exposed:

1. Craft can be viewed as having a limit in which 

 

it is 

 

an explicit
message passing programming model, with all its full power
for describing parallel problems.

2. Releasing the tight conditions that lead to this limiting case, a
scope of possibilities arises.  In this sense, small changes in a
serial source code allow achieving high efficiencies in inter-
mediate problems. 

3. Efficient and general Craft programs can be written in such a
way that they can be equally executed in serial machines.
This may be very important when debugging or adding and
testing new pieces of code.

4. It clearly detaches the task of describing the parallelism of the
problem (including  the suitable communication pattern)
from the task of  implementing the communication calls. The
first one, which the compiler cannot find efficiently by itself
is left to the user, while the second one can be afforded  and
fully granted by the compiler or the underlying hardware. A
Craft code would have then the  promise that future improve-
ments in transferring data will be automatically used in a
totally user transparent fashion.

5. Non-specialist parallel programming people can collaborate
efficiently with a more experienced user. It permits to take
benefit of parallel architectures to people that otherwise
would not consider this possibility.

In summary, for simple parallel problems, where more
complex approaches would be unnecessary, Craft provides and
easy and quick tool to obtain a running parallel program with
good efficiency.  On the other hand, for more difficult problems
from the point of view of  parallelism, the Craft system can be
used as a particular  message passing or get/put model program-
ming, using a fortran familiar syntax, achieving then similar
performances to more advanced systems. Furthermore, in both
cases it makes possible the desirable attribute of keeping
compatibility with common serial machines. It thus meets the
requirements for allowing a “continuous” transition from
sequential to parallel programming, with the warranty of
keeping good efficiencies in general parallel algorithms. 


