

HPF Programming: Myth or Reality?

A User's Point of View
Jean-Yves Berthou

CEA/DI-Cisi

CEA-Saclay, Bat 474

91191 Gif-sur-Yvette cedex, FRANCE

Laurent Colombet

CEA/DI-Cisi

CEA-Grenoble, 17 Rue des Martyrs

38054 Grenoble cedex 9, FRANCE

Abstract

It is now well known that the data parallel programming model significantly speeds up the development time of
parallel code compared to the message passing programming model. But, it is also well known that data parallel
compilers still have great progress to make in order to be competitive to message passing libraries.

We have implemented, using Craft (the Cray MPP data parallel language) and HPF 1.1, three basic scientific codes
and kernels: a weather forecast program from NCAR, a tensor product, a Monte Carlo application. We compare the
performance of the HPF programs to their Craft and message passing versions. Then, we discuss the pros and cons of
the data parallel compilers we used and HPF data parallel programming[For94] .

1 Introduction

Since 1987, CEA users have developped data parallel codes in order to solve new large-scale problems. The first
applications that have been written with CM-Fortran, the data parallel language of the Thinking Machine computer,
have produced some interesting results and shown the capabilities of the data parallel model. But the translation of a
part of these applications into Craft without even a good efficiency has somewhat discouraged users to write data
parallel codes. Moreover, since Craft was a computer-seller language, the Craft codes were not portable. But, it is
clear that an efficient and portable data parallel language that allows users to write more easily parallel codes is still
needed. The HPF language has become in the past two years a de facto standard for data parallel programming. The
recent coming out of industrial commercial HPF compilers reassures end users on the perenniality and viability of
HPF programming.

The aim of this paper is to help potential users of data parallel programming to understand the current world of High
Performance Fortran (HPF) and to anticipate future developments with it. It is expected that HPF, which combines

full Fortran 90 language with special user directives dealing with parallelism, will be a standard programming model
for production codes on many types of machines, such as vector processor machines (like Cray T90) and massively
parallel computers (like SGI Origin 2000 or Cray T3E). For scientists who wish to take advantage of the power of all
computer architectures, the use of HPF seems to be an interesting apportunity.

In the following sections, we study three applications, a weather forecast program from NCAR, a tensor product and a
Monte Carlo application, in order to evaluate the capabilities to have good speedup and efficiency using automatic
parallelization and the HPF language. The target machines on which we performed the experiments are a Cray T3D
with 128 processors and a T3E-600 with 128 processors. The following table summarizes the characteristics of these
machines:

Table 1

We currently have at our disposal a T3-750 with 256 processors. We briefly present the performance of the Tensrus
code on this machine. The data parallel compilers we used are: Craft (Cray T3D proprietary data language), pghpf 2.1
from Portland Group Inc.[TPG96, BMN+97] and xhpf 2.1 from Applied Parallel Research[Res95]. In the following
pghpf refers to pghpf2.1 and xhpf refers to xhpf2.1. The conclusion section discusses the pros and cons of the data
parallel compilers we used and HPF data parallel programming.

1.1 A Few Words About Data Parallel Programming

A program which performs identical computations over a large set of data points, is called a Data Parallel program.
The approach to parallelizing this type of programs consists in distributing the data over the number of available
processors. Then, each processor independently performs the computations on its subset of data. Basically, a data
parallel programming language supports features (i.e., compiler interpreted keywords) allowing the programmer to
specify the data distribution. HPF is currently known as the future standard for Data Parallel programs.

From a default, or user's imposed data distribution, the HPF compiler has to generate an SPMD-type (Single Program
Multiple Data) executable that optimally uses an underlying message passing communication protocol for
inter-processor data transfers. In the SPMD programming style, all processors execute the same program (i.e. the same
instruction set) but on private data only, that is to say the data stored in the local memory of the processor. If a
processor needs to access remote data from another processor, the values are transferred using the interconnection
network, and stored in the local memory. Most compilers apply the owner computes rule, which states that the
processor that will do the computation is the one which owns the data to be modified. A simple implementation of this
rule, called run time resolution, can be obtained by a test during the execution of each processor's program to detect
whether for each instruction the value to be modified is in its local memory. If this is the case, the instruction will be
executed. If a non-local read-only value is needed, there will be a remote load from the processor which holds this
value. Of course, the run time resolution technique is inefficient, and generally, compilers use this approach only if
they cannot determine at compile time the data points which have to be exchanged among processors and the
instructions which have to be executed by each processor.

One technique to hide communication time consists in overlapping communications with computations [CCM95].
Communication is performed while the receiving processor is still computing. A detailed data flow analysis (see
[Fea93]) allows the automation of this technique. However, commercial compilers currently make no use of this (or
similar) technique(s). The optimization of inter-processor communication is still the key to achieving a fully
optimized (i.e., fully scaling) parallel executable. The message vectorization optimization [Ger90] uses the level of

loop-carried data dependencies to calculate whether communication may be legally performed at outer loops,
replacing many small messages with one larger message. This optimization is one of the most worthwhile. As for
message vectorization, most communication optimizations (message coalescing, message aggregation) need at least
a full dependence analysis, and at best a data flow analysis.

2 The Shallow Program

The shallow code is a weather forecast program from National Center for Atmospheric Research Boulder. We have
retrieved it from the Applied Parallel Research Benchmark suite. This code handles 513 x 513 matrices and is regular
and static. Thus, it is a good candidate for automatic parallelization and HPF programming.

We submitted the Fortran 77 version of shallow to the xhpf parallelizing compiler. The sequential execution time on
one processor of the Cray T3D MPP was equal to 131.9s. The automatic parallelizer produced a parallel code which
had an execution time on a single processor equal to 70 seconds! This improvement is due to the data distribution
produced by xhpf, which improves data locality and so decreases cache misses. Some performance measurements with
Apprentice (a monitoring tool for the T3D) confirmed this analysis. In the original version, 80% of the computation
time is spent in memory access, compared to 35% for the xhpf version.

We produced automatically an HPF version of shallow using xhpf and improved this HPF version in a few hours.
The HPF code has been submitted to the pghpf compiler. The following table summarizes the execution times, the

efficiency of the parallel program1 and the MFLOPs obtained with the HPF version of shallow executed on Cray
T3D and T3E compiled by the pghpf and the xhpf compilers.

Table 2

On T3D, xhpf leads to better performance than pghpf does: until 32 processors, xhpf obtains 8-11 MFLOPs/processor
while pgphf obtains 4-8 MFLOPs/processor. The ratio T3E/T3D of the execution times is good for xhpf (3) while
it is very disappointing for pghpf. This clearly, proves that HPF programming is viable but performance is very
compiler-dependent.

3 Ising: Simulation of the 2D Ising Model Using the Monte Carlo Method

The ising program simulates the 2D Ising model (2 iterations), using the Monte Carlo method (Metropolis
algorithm). The sequential version has been written by Alain Billoire, CEA/DSM/SPHT and handles 512 x 512
matrices. Francois Robin, CEA/DAM, has written a Craft version of ising. We have translated the Craft version into
HPF within two days. The HPF code has been sumitted to xhpf and pghpf on T3D and T3E. Unfortunately, xhpf failed

in compiling the HPF version. According to the Applied Parallel Research support team, xhpf misinterprets the
bi-dimensional data distributions.

The characteristics of the HPF code are the following. The arrays, which are all bi-dimensional, are (block,block)
distributed. The two intrinsic functions cshift and sum are intensively invoked.

The experiments we present below were performed on two iterations of the main loop included in the ising program.

These two iterations represent 350x106 floating point operations and 600x106 integer point operations. In the following
MINTOPs stands for million integer operations per second. As it can be seen in the following table, the performance of
the Craft version on T3D was very poor.

Table 3

The Craft version achieved at best 10 MFLOPs plus 17 MINTOPs, on 32 processors. The good surprise was that the
HPF version achieved good performanc as well as good scalability on T3D and T3E. Indeed, the HPF version aimed
8-10 MFLOPS + 14-17 MINTOPs/processor on T3D and 25-30 MFLOPS + 40-50 MINTOPs/processor on T3E until 128
processors.

Table 4

4 Tensrus: three-dimensional Tensor Product

Tensrus implements a three-dimensional tensor product. It is the kernel of a solver for elliptic differential equations
(Poisson, Helmholtz..). The sequential version is due to Laurent Plagne CEA/DSM. It is applied to 64 x 64 x 64 to 512
x 512 x 512 matrices. It has been translated into HPF to Jean-Yves Berthou and Laurent Plagne. The main features of
the method are described below:

3D domain with non-uniform Cartesian grid.
B-spline collocation method of odd orders
Multi-pole expansion is used to provide the boundary conditions

The cost of the method is proportional to N 4 (versus N 3 log N for FFT) where N is the number of grid knots
in one dimension. Nx,Ny,Nz can be different.

There is a large class of physical problems for which a non-uniform grid is a great advantage. In addition, because of
the accuracy due to the use of B-spline, this method is, for certain problems, very competitive compared to FFT based

ones2.

We have submitted Tensrus to the xhpf automatic parallelizer. xhpf produced in a few minutes a very inefficient
code. By analyzing the resulting data parallel program, we understood that xhpf failed in generating the
INDEPENDENT directives, that localize the parallel loops. These directives where placed in the innermost loops of the
three loop nests that compose Tensrus, inducing a great amount of communication and a very small grain
parallelism. Then, we corrected the HPF code generated by xhpf. This tooks us half a day. The three dimensional

arrays manipulated by Tensrus are (BLOCK,*,*) or (*,*,BLOCK) distributed. The two dimensional arrays are
replicated. Here is one of the three loop nests of Tensrus:

!HPF$ DISTRIBUTE (BLOCK,*,*) :: vect, fp, fpp
!HPFS DISTRIBUTE (*,*,BLOCK) :: te
CHPF$ INDEPENDENT
 DO a = 1, nsx
 DO b = 1, nsy
 DO k = 1, nsz
 fp(a, b, k) = O.O
 DO c = 1, nsz
 fp(a, b, k) = fp(a, b, k) + matz(k, c) * vect(a, b, c)
 ENDO
 ENDO
 ENDO
 ENDO

The three loops nests are parallel. All the communication are contained in the redistribution of the array fpp, which
becomes (*,*,BLOCK) before the execution of the last loop nest. We also developped a MPI message passing version
in 3 days. The following table summarizes the execution times, the efficiency of the parallelization of the HPF version
and the MPI version of Tensrus executed on the Cray T3D. Tensrus is executed here on 64 x 64 x 64x matrices.

Table 5

If xhpf is better than pghpf on a small number of processors, pghpf scales better. But above all, the efficiency of the
HPF version is comparable to the one of the MPI version. Are we satisfied with these results? Absolutely not, since, if
the efficiency is good, the performance is not good at all: 3.5 MFLOPs/PE. The parallel program has poor
performance because the sequential source program is intrinsically inefficient. The main reason is that in Fortran the
arrays are arranged in a column fashion while the arrays are accessed in Tensrus according to the rows. This leads to
a very high number of cache misses during the execution. Thus, we applied numerous matrix transpositions in order to
decrease the amount of memory accesses. But also in such a way that the outer loop of the three loop nests are
parallel and the data distribution match the computation distribution. The sequential version of this new program,
compiled by the Cray Fortran 90 compiler was much more efficient. We obtained 74 MFLOPs on T3D and 136
MFLOPs on T3E! We also submitted this new sequential version to xhpf which succeeded in producing the same HPF
program we had hand coded. The performance of this code compiled by xhpf and pghpf on T3D and T3E are the
following. The experiments have been conducted on 128 x 128 x 128 matrices:

T3D measures:

The HPF code compiled by xhpf leads to linear speed-up on 2 to 16 processors with 15
MFLOPs/PEs and 1.3 GFLOPs on 128 PEs. The HPF code compiled by pghpf leads to linear
speed-up on 2 to 128 processors with 13 MFLOPs/PEs and 1.7 GFLOPs on 128 PEs.

T3E measures:

The HPF code compiled by xhpf leads to linear speed-up on 1 to 32 processors with 40

MFLOPs/PEs and 3.2 GFLOPs on 128 PEs. The HPF code compiled by pghpf leads to linear
speed-up on 1 to 64 processors with 28 MFLOPs/PEs and 2.1 GFLOPs on 128 PEs.

We still observe that xhpf is better than pghpf with a small number of processors but pghpf scales better. We still were
not satisfied by these results since the performance of the sequential version was four times better than the
performance per processor of the HPF version. Then, we decided to gather the computations contained in the three
loop nests of Tensrus (which are "local" computations) in PURE subroutines compiled separately with the Cray
Fortran 90 native compiler. This new code transformation leads to the following version of the first loop nest.
matmatl is the local computation performed by each processor.

!HPF$ DISTRIBUTE (*,*) :: matzt,matizy,matiizy
!HPF$ DISTRIBUTE (*,*,BLOCK) :: TE, fp, fpp
!HPFS DISTRIBUTE (BLOCK,*,*) :: vect

!HPF$ INDEPENDENT, NEW(matizy,matiizy)
 do a=l,nsx
 do b=l,nsy
 do c=l,nsz
 matizy(c,b)=vect(a,b,c)
 end do
 end do
 call matmatl(matizy,matiizy,matzt,nsy,nsz)
 do b=l,nsy
 do k=l,nsz
 fp(k,b,a)=matiizy(k,b)
 end do
 end do
 end do

Since the xhpf compiler does not interpret the PURE clause, it can not compile this third HPF version of Tensrus.
This version was the good one. We have executed the program for different matrix sizes: 128 x 128 x 128, 256 x 256 x
256 and 512 x 512 x 512.

Table 6

The performance on T3D is very good. Tenrus achieved 8.4 GFLOPS on 128 processors, that is 66 MFLOPs per
processor. The performance on T3E decreases rapidly because there is not enough computation to feed the T3E
processors. This is confirmed by the numbers we obtained on larger matrices:

Table 7

On 512 x 512 x 512 matrices, we obtained 19.5 GFLOPs on 128 PEs, which correspond to 152 MFLOPs per processor.
On the new T3E configuration we received a few weeks ago, (PEs: 21164-375 Mhz, 256 PEs) we obtained 41

GFLOPs on 256 PEs, which correspond to 160 MFLOPs per processor.

5 Conclusions

The experiments conducted on the three codes shallow, Ising and Tensrus show that both automatic
parallelization and HPF compilation may be efficient for the parallelization of scientific codes for parallel distributed
memory machines.

First, these approaches are efficient for codes with static control which handle basic data structures (i.e. arrays) with
linear access to memory.

Second, the parallelization of the shallow code shows that the rewriting of a sequential code in HPF may increase
data locality. Such optimizations are efficient for distributed memory machines, shared memory machines, workstation
networks, etc.

Third, automatic parallelization and HPF programming constitute the first steps towards the parallelization of
intrinsically data parallel programs. Thus, even if the resulting parallel program proves inefficient, the time spent is
paid off.

Finally, when automatic parallelization or HPF programming are efficient, they considerably speed up the production
of parallel code. Moreover, HPF programming increases notably the maintenability of parallel code. Indeed, when
Fortran 95 will be available, only one code will have to be maintain by the users: the sequential code plus HPF
directives. This is not true with message passing programming, where two codes have to be maintained, the sequential
source program and the parallel message passing version.

But things are not so rosy. Porting real applications written in HPF on MPP machines also revealed the current
limitations of the xhpf and pghpf HPF compilers we used.

First, writing an efficient HPF code often means writing one "HPF" version for each HPF compiler. The first reason is
that compilers do not interpret identically the HPF directives your HPF code contains. We should mention that the
pghpf compiler interpretation of HPF directives is really close to the specifications of the HPF language, as defined by
the HPF Forum. This is not true for the xhpf compiler. The second reason is that the efficiency of an HPF program may
depend on the use of directives that are specific to the HPF compiler. This is a crucial point for xhpf, but it is less
important for pghpf which has only added clauses to directives that will be partially included in the HPF 2.0 approved
extensions. The third reason is that compilers do not accept the same subset of the Fortran 90 language. Again, this is
currently a real problem for xhpf, not so much for pghpf. Accepting the whole Fortran 90 language in the near future is
the number one priority of Applied Parallel Research and Portland Group Inc.

Second, as shown with the parallelization of the Tensrus program, the more you hide to the HPF compiler, the more
the parallel code is efficient. More precisely, the larger is the part of the source code compiled by the native Fortran
90 compiler, the better is the performance of the parallel code. This also means that local computations have to be
performed as much as possible using routines of sequential libraries (i.e, Benchlib, scilib on Cray MPP machines).
The parallelization of Ising showed that the HPF compilers, and especially pghpf, efficiently compile
INTRINSICS subroutines.

Third, it might happen that the performance of the parallel generated code is actually worse than the performance of
the sequential code. A fragment of code whose execution time is negligible may become a very consuming time
fragment in the HPF version. For example, this is the case when the compiler applies the run time resolution. Thus,
porting a large application is hazardous. Under HPF2.0 it will be possible for the user to put these fragments of code
into HPF_SERIAL extrinsic procedures. Such procedures are guaranted to be executed on one processor. This
eliminates the communication and computation overhead induced by the run time resolution.

Fourth, the learning effort for good HPF coding is substantial. Users must know Fortran 90 (and Fortran 95 in the near
future), HPF features and the compiler-specific characteristics in order to obtain good performance.

Fifth, HPF directives are only advice the user gives to the compiler. The compiler may follow them or not. Moreover,
the user does not necessary specify the mapping of the data on the physical processors of the target machine, or the
alignement between arrays. This implies that the compiler has to make some choice about the data mapping, the data
alignement and sometimes about the data distribution. It is absolutely necessary that compilers specify, as xhpf does
partially, the choices done. Without this information the user has great difficulties in understanding the work the

compiler does and then, great difficulties in debugging or improving its HPF code.

To conclude we think that the HPF compilers should improve their portability. This means they should compile the
whole Fortran 90 language and the whole HPF langage. They should also interpret the HPF directives as specified by
the HPF language specifications (a bad example is the way xhpf manages dummy argument distribution). Their
efficiency must not depend on compiler-specific directives. They should provide tools adapted to data parallel
programming such as visualization tools for distributed data structures like HPF-Builder from LIFL Lille
University[LD96, LD97]. For instance, if an application performs computations on several three-dimensional arrays, it
is not easy for the user to take into account the different possibilities of distribution along each dimension (or
alignement and mapping) in order to improve the efficiency of the loop nest associated to these arrays.

Endnotes

1 The efficiency of the parallel program E(p) is equal to E(p) = Tl/pT p , where p is the number of processors, T 1 is the

execution time of the sequential program and T p is the execution time of the parallel program executed on p

processors. This quantity measures the absolute gain in performance of the parallel program.

2 For more information, please contact Laurent Plagne, plagne@drfmc.ceng.cea.fr

References

[BMN+97] Z. Bozkus, L. Meadows, S. Nakamoto, V. Schuster, and M. Young. Pghpf - an optimizing high performance
fortran compiler for distributed memory machines. Scientific Programming, 6(1):29-40, Spring 1997.

[CCM95] C. Calvin, L. Colombet, and P. Michallon. Overlapping Techniques of Communications. In Proceedings of
HPCN'95, Mai 1995.

[Fea93] Paul Feautrier. Toward automatic partitioning of arrays on distributed memory computers. In ACM ICS'93,
pages 175-184, Tokyo, Juillet 1993.

[For94] High Performance Fortran Forum. High Performance Fortran Language Specification, version 1.1. Technical
report, Center for Research on Parallel Computation, Rice University, Houston, TX, Novembre 1994.

[Ger90] M. Gerndt. Updating distributed variables in local computations. In Concurrency: Pratice & Experience, pages
2(3):171-193, Septembre 1990.

[LD96] Christain Lefebvre and Jean-Luc Dekeyser. Hpf-builder: A visual environment to transform fortran90 codes to
hpf. In J. J. Dongarra and B. Tourancheau, editors, Third Workshop on Environments and Tools for Parallel Scientific
Computing, August 1996.

[LD97] Christain Lefebvre and Jean-Luc Dekeyser. Hpf-builder: Visual hpf directives programming environment. In
High Performance Fortran(HPF) User Group, February 1997.

[Res95] Applied Parallel Research. Forge high performance fortran, xhpf version 2.1, user's guide. Technical report,
Octobre 1995.

[TPG96] Inc The Portland Group. pghpf user's guide, version 2.1. Technical report, Mai 1996.

Table of Contents | Author Index | CUG Home Page | Home

