
Porting LCPFCT to the CRAY T3E Using HPF

Jay Boisseau, Bob Sinkovits, and Ken Steube
San Diego Supercomputer Center

San Diego, CA USA

ABSTRACT: LCPFCT is an accurate, robust, easy-to-use, publicly-available library of
routines for solving nonlinear, time-dependent continuity equations using the Flux-
Corrected Transport (FCT) algorithm. LCPFCT has been used in a variety of applications,
including fluid dynamics, plasma dynamics, magnetohydrodynamics, and reactive flows.
LCPFCT has been optimized for many platforms, including CRAY PVPs. We present the first
version of LCPFCT converted to HPF (LCPFCT-HPF) and optimized for the CRAY T3E. We
discuss the issues involved in porting and optimizing LCPFCT and present performance
data for up to 32 processors on the T3E.

Introduction
In order to better understand the process of taking an application from a CRAY PVP system and porting it

to the T3E, we have parallelized a fluid dynamics code using High Performance Fortran (HPF). Several steps
were involved:

• choose a code that seems well-suited for HPF on an MPP system
• choose a porting strategy
• port the code
• evaluate performance
• enhance performance

While this work evaluates only one of the available HPF compilers, it will help scientists and consultants
set their expectations for such an endeavor. The strengths and weaknesses of the different HPF
implementations will of course vary.

Our ease of success at parallelizing a code using the Portland Group's HPF compiler speaks well for this
compiler implementation. Certainly some effort was required to find the best method of porting and to avoid
some problems with the compiler, but considered as a whole, our experience with this compiler on this code
is positive.

Choosing a Code for Porting to HPF
As has been noted elsewhere, a class of codes that works reasonably well in current implementations of

HPF compilers includes many finite difference and image processing codes. These types of problems require
the exchange of data on the boundaries between blocks owned by different processors and can be parallelized
using overlap shift operations. For example, in a problem with a 2-D array that is distributed in vertical strips,
it might be necessary to have processors exchange one or more boundary columns, depending on the type of

differencing or image processing technique used. HPF compilers are optimized to recognize the need for this
type of communication pattern.

Some of the current HPF compilers, such as Portland Group's, provide an option that allows the
programmer to specify the amount of overlap to be exchanged. This is an aide to the compiler in cases where
it may not be able to determine the optimal overlap. Continuing the 2-D example, an algorithm that involves
updating U(I,J) based on the values of four near neighboring values would require an overlap of 1. The
programmer may be able to assist the compiler by specifying this value.

HPF is not currently designed to easily accommodate irregular grid problems, although enhancements are
under consideration.

The Code: LCPFCT

LCPFCT solves the nonlinear, time-dependent continuity equations using the Flux-Corrected Transport
(FCT) algorithm. It offers 4th order phase accuracy with minimal residual diffusion, and is monotone,
conservative, and positivity-preserving. FCT was developed to solve problems which are characterized by
very steep spatial gradients. When applied to the numerical simulation of shock wave propagation, FCT
preserves the sharp density and pressure profiles while maintaining the positivity of physical variables and
without introducing new maxima or minima into the solution.

Algorithm

LCPFCT can be used for both 1-D and multidimensional problems. In the later case, a technique known
as direction splitting is used where LCPFCT is called repeatedly over each of the spatial dimensions. Although
fully 2-D and 3-D versions of LCPFCT have recently been developed, many codes still use the 1-D version.

Code Characteristics

Our first task was to run the code on a single processor of the T3E using apprentice to determine which
loops were important to parallelize. There were five loops in the LCPFCT subroutine which consumed nearly
all the compute time, and so we focused our efforts on those loops.

Viability for Porting

LCPFCT is a fairly strong candidate for parallelization even though it solves only a 1-D problem. In many
instances, such as the numerical simulation of reactive flow problems (i.e. flames, detonations, etc.),
convection is only one of several physical processes (conduction, diffusion, chemistry) that must be treated. It
is important that the convection routine be well-parallelized so that it does not become the bottleneck in the
simulation.

In a typical finite difference calculation, element X(I) of an array is updated based on the values of
neighboring elements in index space. This leads to a communication pattern in which a single floating-point
value needs to be sent to the neighboring processor for each distributed array. A sample loop from the
LCPFCT subroutine is shown below:

 DO I = 1, N

 FLXH(I+1) = FSGN(I+1) *

& AMAX1(0.0, AMIN1(TERM(I+1),FABS(I+1),TERP(I+1)))

 RHON(I) = RLN(I) * (LNRHOT(I) + (FLXH(I)-FLXH(I+1)))

 SOURCE(I) = 0.0

 END DO

Three criteria are commonly applied to a program to determine if it is a candidate for parallelization.
Frequency of use: LCPFCT is the basic program used by an entire group at the Naval Research Laboratory,
in addition to a large number of researchers around the world. Execution time: runs last from several
minutes to several hours on the CRAY PVPs. Resolution needs: LCPFCT is commonly used with high
temporal resolution, and occasionally used for high spatial resolution. It is these runs with high spatial
resolution that our work targets. High temporal resolution does not indicate a need for parallelization in the
case of this program because the time steps must be done sequentially.

Additionally, vector-style calculations on stride-one loops means that we should be able to get reasonable
performance on this code. However, one normally has to resort to extremes to get good performance from the
hierarchical memory systems on modern microprocessors, and we will chronicle our difficulties in this part of
the endeavor below.

Choosing a Porting Strategy

HPF Overview

HPF is a data parallel language intended to simplify the process of porting serial Fortran programs to
parallel computers. In theory, you can take an existing serial program and add compiler directives to distribute
large arrays among the processors on your system. Special attention must be given to the loops in the
program to specify how they should be parallelized. The programmer can apply compiler directives to
parallelize a loop or rewrite DO loops using data parallel constructs such as the FORALL statement. In
addition, many loop operations can be replaced by intrinsic functions which are generally well-optimized for
the target architecture.

PGHPF Overview

The Portland Group's pghpf compiler was used to port the code. This compiler is currently capable of
compiling most Fortran 90 and HPF syntax, and a review of the release notes turned up no serious problems
for our effort.

pghpf compiles HPF programs by translating them to Fortran 77 syntax, and then by calling the native
Fortran 77 compiler (f90 on the T3E) and linking with HPF libraries. Communication is done via HPF library
calls, which ultimately use CRAY's fast SHMEM calls.

Initial Plan

Since LCPFCT is a structured grid computation, we were able to decompose arrays using the
DISTRIBUTE and ALIGN directives. All computation is done in approximately 30 conformable 1-D
arrays, which are distributed in a block fashion such that corresponding elements of different arrays all reside
on the same processor.

The easiest technique for parallelization in HPF is to apply INDEPENDENT directives to loops where
there are no data dependencies. Care must be taken in these cases to be certain that no data dependencies
actually exist within the loops.

As always in parallel programming, the simplest technique is not necessarily the best. We anticipated
using FORALL and array syntax to parallelize some or all of the loops to get the level of performance we
desired. We drew the line at creating extrinsic functions since our purpose was to study HPF rather than
message passing.

Porting Experiences
A number of the loops in the LCPFCT routine did contain data dependencies. These were eliminated by

splitting the loops into two or more loops. Our first attempt at parallelization of the DO loops was to precede
them with the INDEPENDENT directive. While this gave correct results, it was immediately obvious that
we had achieved no scaling whatsoever. In an attempt to determine the reason for the poor performance we
examined the intermediate Fortran 77 source code generated by the compiler. What we discovered was that
the compiler had to insert numerous PGI library calls to ensure data coherence in loops that would have
required only one or two message passing calls. The DO INDEPENDENT loops could be made to work
much more efficiently by using temporary arrays to hold shifted copies of arrays that are used within the
loops. By doing this the loops could be written so that the same array index is referenced on both side of
assignment statements.

The next attempt at loop parallelization involved the use of the FORALL construct. This resulted in a
significantly faster code which achieved reasonable scaling and avoided the overhead and additional memory
requirements associated with copying shifted versions of arrays into temporary arrays. Finally, we tried
replacing the FORALL constructs by Fortran 90 array syntax statements. The timings for these two versions
of the code were virtually identical as we had expected.

Evaluating Performance

Timings

We tabulated timings and performance data for runs with our 1-D arrays of lengths 10000 and 100000 on
various numbers of T3E processors and compared these to the times on a single vector processor of the
CRAY C90:

 PEs N=10000 N=100000

 CPU(s) Mflops CPU(s) MFlops
1 1.1790 16.5 10.6875 18.5
2 0.7502 26.0 5.5221 35.9
4 0.3768 51.8 2.8627 69.2
8 0.2515 77.6 1.5354 129.1
16 0.1973 98.9 0.8694 228.0
32 0.2046 95.4 0.5663 350.1
C90 0.0507 385.0 0.5071 391.0

The CPU time decreased as the number of processors was increased to 16 or 32, respectively, for problems of
size N=10000 and N=100000. Since the Portland Group's profiling facility pgprof is not yet supported for the

CRAY MPP systems, performance data was determined by comparison with CPU times obtained from runs
on the CRAY C90 using the jumpview utility. For both problem sizes, a single processor of the C90 was
faster than 32 PEs of the T3E. This result is not too surprising though since the ratio of computations to
communications tends to be relatively low for reasonably sized 1-D problems. In addition, the LCPFCT code
had already been carefully optimized for vector machines, achieving almost 40% of peak performance on the
C90 and utilizing average vector lengths very close to 128.

Enhancing Performance

The types of performance enhancements we were able to do in this work were severely limited due to the
constraints placed upon us by HPF. The main enhancement involved using FORALL constructs or array
syntax operations. After this our code used optimized library calls provided by the Portland Group to perform
much of the calculation. Of course, this gave us no degree of control over the use of the DEC Alpha 21164
cache memory.

The way to optimize for cache memory use is to control data layout so that large chunks of each of the
arrays can co-exist in cache. Normally, this would be done by re-organizing the common blocks in which
arrays are stored, and by inserting pad variables to space the arrays. This way, one can control the mapping of
the arrays into cache memory. Since arrays in Fortran 77 common blocks are guaranteed to be stored
contiguously in memory, you can control where they map into cache relative to each other by changing the
sizes of the pad variables.

In HPF, though, a guarantee of contiguousness inhibits automatic distribution of the arrays, and so no
such guarantee is available. You simply cannot get contiguous storage of arrays while distributing those
arrays. A future release of CRAY's f90 compiler will have compiler options to assist with cache storage
control, and it may be possible to better optimize for cache at that time.

Another issue in optimizing this code is that since there are so many work arrays requiring the same
communication pattern, we would like to combine the communication calls into a single call to reduce latency.
This is a global optimization that is easy for the programmer to detect given his knowledge of the calculation.
We were unfortunately subject to the limitations of the compiler and its ability to do this type of global
optimization.

Summary
The overhead generated by the implicit synchronization and communication calls between dependent loops

and array syntax operations makes it necessary to construct loops and array operations with many operations
per processor to overcome the latency and bandwidth limitations of the hardware. This constraint is much
more severe than on CRAY PVP systems, which have vector processing hardware (much less overhead to
start loops) and even compilers that automatically perform loop fusing where possible. Thus, efficient vector
code does not necessarily produce good parallel code just by using DO INDEPENDENT assertions,
converting to FORALL statements, or rewriting using array syntax operations. Porting Fortran codes from
CRAY PVPs to a CRAY T3E requires an extremely careful analysis of the main loops for sufficient
computational content between the loops (that probably must be reorganized to remove parallel dependencies),
where implicit overhead occurs. Our work is shows that the current PGI HPF compiler can produce scalable
code, but demonstrates the difficulties one might have in developing efficient parallel code using an HPF
compiler at this level of maturity.

