
Porting LCPFCT to the CRAY T3E Using HPF

Jay Boisseau, Ken Steube, and Bob Sinkovits

San Diego Supercomputer Center

San Diego, CA USA

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 1

OUTLINE

I. The Goal: Port a CRAY C90 Code to the CRAY T3E Using HPF

II. The Candidate: LCPFCT

III. Introduction to HPF

IV. SDSC’s CRAY T3E and PGI’s HPF Compiler

V. Initial Quick & Dirty Porting Plans

VI. Porting Experiences

VII. Timings

VIII. Remarks & Conclusions

IX. Future Efforts

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 2

I . THE GOAL: PORT A CRAY C90 CODE TO THE
CRAY T3E USING HPF

1996 User Survey:

81% used C90 in 1996

12% of respondents used T3D in 1996 (9% used Paragon)

25% expected to use T3E in 1997

Allocations for 2Q97:

14 SDSC & 15 MetaCenter allocation requests (135 users in April)

Usage expected to grow as system becomes familiar, robust

Future Availability of Cycles

MPP cycles will be more plentiful in future than vector cycles

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 3

I I . THE CANDIDATE: LCPFCT

Algorithm

Solves generalized continuity equations

Flux-Corrected transport algorithm

4th order phase accuracy, minimal residual diffusion

Monotone, conservative, positivity-preserving

Code

Finite difference, non-uniform grid, inflow/outflow, periodic boundary

conditions, multiple coordinate systems

1D, extensible to multiple dimensions

Efficient on Cray vector platforms

Library of routines passes variables in COMMON blocks

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 4

Viability for Porting

Mostly nearest-neighbor communications

Mostly stride 1 loops

Representative of serial codes and vector codes

Easy to use in multidimensional codes

Less intensive than other more easily parallelized processes in typical

reactive flow codes (chemical reactions, diffusion, etc.)

Satisfies main criteria for parallel candidate (Pancake 1996):

frequency of use, execution time, resolution needs

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 5

I I I . SDSC’S CRAY T3E AND PGI’S HPF COMPILER

SDSC CRAY T3E Configuration

256 PEs: 153.6 Gflop/s theoretical peak

300 MHz EV5 chips

240 Application PEs; 8–192 PE, express and dedicated queues

128 MB / PE (116 MB available to user codes)

PGI’s HPF Compiler

Translates to F77 + PGI library calls

PGI library calls converted to SHMEM calls

Will use global memory addressing hardware directly

Will include CRAFT functionality

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 6

IV . INTRODUCTION TO HPF

Data Parallel Programming Language

Single-threaded control structure

Global name space

Loosely synchronous parallel execution

Single Program Multiple Data (SPMD) Model in HPF

Works primarily with array operations

No explicit messages, locks, synchronization

User controls data distribution

Extrinsic procedures allow MIMD operation

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 7

What is in HPF?

All of Fortran 90

Adds several compiler directives: DISTRIBUTE, ALIGN,

INDEPENDENT, etc.

Adds one executable statement: FORALL (added to Fortran 95)

Adds one attribute: PURE (added to Fortran 95)

Parallelism in HPF:

Array syntax

Loops (FORALLs, INDEPENDENT DOs)

Intrinsic functions

Key to Parallelism in HPF:

Data distribution

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 8

 Why Use HPF?

Easier for programmer than MPI (harder for compiler writer!)

Portable, and useful on a variety of parallel machines

Fortran is still language of choice for scientific programming—large

installed user base

Fortran 90 has most useful features of C++/Ada plus unique features

Why Should I Not Use HPF?

Not as efficient as MPI (ever?)

Not as portable as MPI (yet)

Not widely available for networked computers (yet)

Not as cheap as MPI (yet)

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 9

V . INITIAL QUICK & DIRTY PORTING IDEAS

Is the algorithm amenable to data parallelism? Is the domain
regular? If so:

Decompose the data using DISTRIBUTE and ALIGN directives. Use

PROCESSORS and TEMPLATE if they seem warranted.

Check DO loops for dependencies, and add INDEPENDENT directives

where possible (may require splitting loops)

Use FORALL loops and WHERE masks to operate on entire arrays

simultaneously.

Simplify complicated statements in more simple ones. Use array syntax,

call HPF intrinsic functions, etc.

Is the code performing well? Is it scalable? If not, choose a different
algorithm or go to message passing.

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 10

VI . PORTING EXPERIENCES

(1) Converting DO loops to INDEPENDENT DO loops is neither
straightforward nor always efficient

DO loops must be searched for parallel dependencies:

 DO I = 1, N

 FLXH(I+1) = FSGN(I+1) * AMAX1(0.0,

& AMIN1 (TERM(I+1),

& FABS(I+1), TERP(I+1)))

 RHON(I) = RLN(I) * (LNRHOT(I) +

& (FLXH(I) - FLXH(I+1)))

 SOURCE(I) = 0.0

 END DO

and split to avoid them

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 11

INDEPENDENT DO loops have excessive communications if RHS

arrays have shifted indices:

!HPF$ INDEPENDENT

DO I = 2, N

 FLXH(I) = MULH(I) * (RHOT(I)-RHOT(I-1))

 DIFF(I) = RHOTD(I) - RHOTD(I-1)

END DO

Communication is best done before DO loops for efficiency:

tmp1(2:N) = RHOT(1:N-1) ! ALIGN tmp1

tmp2(2:N) = RHOTD(1:N-1) ! and tmp2

!HPF$ INDEPENDENT

DO I = 2, N

 FLXH(I) = MULH(I) * (RHOT(I)-tmp1(I))

 DIFF(I) = RHOTD(I) - tmp2(I)

END DO

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 12

FORALLs and array syntax are more efficient (if there is communication

in the loop) because they are evaluated line by line

FORALL (i=1:n)

y(i) = a*x(i) + b

z(i) = c*y(i) + d

END FORALL

is executed as

FORALL (i=1:n) y(i) = a*x(i) + b

FORALL (i=1:n) z(i) = c*y(i) + d

which is similar to

y = a*x + b

z = c*y + d

Note: DO loops are perhaps most flexible

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 13

(2) Data management is difficult, making single-PE optimization
very difficult

PGHPF violates Fortran standard of arrays in COMMON blocks being

mapped to contiguous memory by default

PGHPF tends to destroy the old COMMON blocks and creates new

COMMON blocks to hold the data

Even on a single PE, PGHPF gives a different mapping of data to cache

lines than the same code compiled using f90

Declaring common blocks SEQUENTIAL fixes the problem but causes

other problems

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 14

VI I . TIMINGS

PEs N=10000 N=100000
1 1.1790 10.6875
2 0.7502 5.5221
4 0.3768 2.8627
8 0.2515 1.5354
16 0.1973 0.8694
32 0.2046 0.5663

Compiled with: -O3 -O unroll2 -O bl -O aggress -O msgs

Executed for 20 LCPFCT calls

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 15

VI I I . REMARKS & CONCLUSIONS

Keys to Parallelism in HPF:

Data distribution/layout across processors

Number operations in loops/arrays operations vs. overhead:

communication whenever RHS contains offset indices

synchronization whenever next loop uses just-computed values

Modifications to Quick and Dirty Porting Ideas

Split loops to remove dependencies, but merge to reduce overhead

Reorder statements to reduce overhead

Count operations—don’t expect scalability on small problems

Use array syntax, FORALLs, intrinsic functions as much as possible

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 16

Rough Criteria for Scalable Parallel Loops

Latency is ~ 1 microsecond

Operations are ~ 1 nanosecond

Therefore:

need 1000 operations per loop per PE just to balance latency

need 100,000 operations per loop per PE to be scalable, or

loop iterations * # operations in loop / # PEs > 100,000

CUG Spr97 Migrating User to the CRAY T3E from the CRAY T3D and Intel Paragon Page 17

IX . FUTURE EFFORTS

LCPFCT-HPF

Store values in N-dimensional arrays for N-dimensional problem;

push N-1 outer loops into subroutines

LCPFCT2D-HPF

Rick Devore (NRL) solved analytic problem in 2D and developed CMF,

CRAFT versions using F90 array syntax; convert to HPF and optimize

for T3E, extend to 3D

LCPFCT3D-HPF

Rick Devore (NRL) solved analytic problem in 3D and developed

SHMEM, MPI code using F77 syntax; possibly convert to HPF?

