

CUG 1997 Spring

 Proceedings

1

Performance Tools Update

Mary Kay Bunde, SGI/Cray

ABSTRACT:

 Two new performance tools are available for application programmers to use
when tuning their T3E or Origin 2000 codes. In addition to the existing MPP Apprentice perfor-
mance tool, the Cray-T3E offers a new Performance Analysis Tool, PAT. SpeedShop was intro-
duced last summer on MIPS-based architectures. It is available on the Origin 2000. This paper
describes the current features of these tools, and highlights some upcoming plans.

1 Performance Analysis Tool, PAT

PAT, the new MPP performance analysis tool, will be
released for the first time with the Cray Programming Environ-
ment 3.0 release. When the CRAY-T3E hardware and
UNICOS/mk operating system were designed, new function-
ality became available that was beneficial to make use of in
application performance tools. First, unlike the Alpha chip used
on the CRAY-T3D, hardware performance counters are avail-
able on the EV5/6 chip to assist in monitoring performance.
Second, the UNICOS/mk operating system supports the profil()
system call, which was not available on UNICOS-MAX.
Further, CRAY-T3D users continually expressed the need for a
less intrusive performance tool and and access to harware
performance monitor information. The Visual Tools group
lobbied hard with these other groups to bring this functionality
to you.

Pat provides a fast, low-overhead method for estimating the
amount of time spent in programs at the function level, deter-
mining how a program’s load is balanced across PEs, and giving
users access to the hardware performance monitors, as well as
other features described below. Today’s codes are becoming
larger, longer running, with larger datasets, and are complicated
by the programming complexity new architectures require. For
this reason, users need simple tools to help them understand
how the code is behaving on complex architectures. With Pat,
a user’s first look at a program’s performance can be done by
merely relinking the program with the

libpat.a

 library. No
recompilation is necessary to obtain execution time and load
balance information at the subroutine level. With this easy first
look at a program’s performance, users have very quick insight
into which routines may be bottlenecks, or troublesome, to the
program’s performance. After this information is determined,
the user can decide the best next step to analyzing the program’s
performance. Pat is not a replacement for the MPP Apprentice.
Often times, a user will then instrument very specific portions
of code and analyze performance to the block level with the
MPP Apprentice.

1.1 Current functionality

Pat will allow users to analyze a code’s performance
with the following features:

• Display the percentage of execution time spent in functions
(profiling). The estimated percent of execution spent for
each function is shown. Since this number is statistical, a
confidence interval is also given.

For example:

Function user% +- conf

----------- ----- --------

func1 64 +- 2.1

func2 36 +- 2.1

Since profiling information is provided on a modified exe-
cutable, rather than instrumented source, users can obtain
performance information not only on their complete code,
but also on intrinsics and library routines for which they
have no source code.

• Determine how the program’s load is balanced across PEs.
This is done by using profiling to gather data at the function
level on each PE.

• Generate trace files, to display when various events occurred
on different PEs. The tracing feature “wraps” requested
events with timing routines, such that the generated output
shows what events happened at specific times for each PE.
This feature was written so that message passing events
could be traced. Wrapper routines are required to use this
feature. They are provided for the MPI libraries. In the
future, other wrapper routines will be available.

• Time calls to individual subroutines (call site reporting).
For a specified function and PE, pat will provide you the
number of times a function was called, what functions called
it (callers), the total time spent in the function (inclusive of
any callees), and the average amount of time spent per call.

Copyright

 1997. Cray Research, A Silicon Graphics Company. All rights reserved.

2

CUG 1997 Spring

 Proceedings

Both Pat and the MPP Apprentice provide call site instru-
mentation. The times that Pat reports are inclusive; that is
the times include the current function and all it’s descendents
(callees). The MPP Apprentice provides an option to see
exclusive times as well; that is, it will report time from the
desired routine only, and exclude time spent in routines it
called.

• Display hardware performance counter information at the
program level. The CRAY-T3E has 3 hardware counters
through which you can obtain performance information.
The following performance data can be gathered (specified
by environment variables that

libapp.a

 reads):

-Number of integer operations

-Number of floating point operations

-Number of loads

-Number of stores

-Number of data cache misses
As noted above, for most features, Pat does not require a user

to recompile the program, and it is less intrusive while the
program is running and gathering performance data. With the
MPP Apprentice, on average a program instrumented to collect
Apprentice data runs 3 times longer than it does with no instru-
mentation. Pat doesn’t incur this kind of overhead. For a Gaus-
sian code, user time increased by less than 1% while generating
PAT performance data; system time increased by 15%.

1.2 Future Plans

In the near future, the following improvements are planned
for Pat:

• Support for pthreaded programs. Performance counter infor-
mation will be available on a per-thread basis, however, pro-
filing is done per process, not per thread.

• A graphical user interface

• Wrapper routines for I/O libraries, such that I/O events can
be traced through Pat’s event trace mechanism. Also, a tem-
plate will be provided so that users can write their own wrap-
per routines.

• Performance counter information at the function level (inclu-
sive and exclusive)

• Exclusive time for call site data

2 SpeedShop

SpeedShop is the newest SGI performance tool, released for
the first time last summer. SpeedShop runs on all MIPs-based
hardware platforms, and has many similar features to Cray
performance tools. While SpeedShop is a multi-PE performance
tool, we have no experience with SpeedShop at large numbers
(>64?) of PEs, therefore, we’ve yet to determine how this
product will scale. This section describes the features currently
in SpeedShop, and some differences from the Cray performance
tools that are important to note.

2.1 Current functionality

SpeedShop has the following features available to analyze a
program’s performance:

• PC sampling. This can be done down to the instruction level.
It’s important to note that Cray performance tools have never
sampled performance data to the instruction level. The low-
est level Cray performance tools have sampled is the basic
block level.

• Time spent at the routine level. This information is obtained
by profiling the call stack. Therefore, called to and called
from information can be obtained (profile data).

• Instrumentation data. SpeedShop uses a utility, called pixie,
to instrument and provide feedback on a user’s code. Instru-
mentation of a users code can provide the following perfor-
mance feedback:

-ideal time (exclusive and inclusive of called routines)

-instruction counts

-load counts

-store counts

-floating point operations

-exclusive instruction coverage

-branch coverage

-cycles per instruction count

While this type of instrumentation provides an abundance of
useful information, it is very expensive. Typically, an instru-
mented code performs 10 times slower than its uninstru-
mented original code. It’s also important to note that when
instrumentation is turned on, some other SpeedShop func-
tionality will not be available.

• Trace floating point exceptions. This functionality is neces-
sary on SGI systems, as they try to recover from floating
point exceptions, and Cray has always aborted on a floating
point exception.

• R10K performance counter information. The R10K has
hardware performance monitors available to provide some
performance information. Note that only 2 types of informa-
tion can be gathered at a time, and this information cannot be
gathered at the same time as information generated from
pixie instrumentation. Further, performance monitor infor-
mation is gathered by profiling the hardware counters. This
is a less accurate method than is used on Cray architectures.
The following data can be gathered:

-Graduated instructions. That is, every instruction that was
completed, not all that have been issued

-Cycle counts.

-Instruction cache misses, both primary and secondary.

-Data cache misses, both primary and secondary.

-Page faults.

CUG 1997 Spring

 Proceedings

3

-Graduated floating point instructions. That is, every float-
ing point instructioncompleted, not all that have been issued.

In addition to the differences noted above, you’ll notice that
SpeedShop has no graphical user interface. This is likely to
remain the case, so that efforts can be put towards the next
generation toolset for the Origin platforms.

2.2 Future plans

SpeedShop will continue to be maintained until the next
generation toolset is available on the Origin 2000 and later plat-
forms. This next generation toolset is currently called Caribou.
It is an integrated development environment, where debugging,
performance analysis, and static analysis are all available from
one interface. Some benefits of Caribou:

• One interface to learn; one look and feel

• Support for Fortran, C++/C, and shared memory program-
ming models

• There is no need to switch tools when going from debugging
to static analysis, or performance analysis. As a matter of
fact, Caribou will be integrated to the point where the notion
of doing static analysis disappears within the context of
debugging and performance analysis. For example, if I’m
running my program through the context of the debugger,
and I want to see a visual representation of who calls the

function I’m in, a button click will give me that information.
Or, if performance data is available, I can see how many
times function

foo

 was called while I’m in the debugging
context.

• Caribou leverages the strengths of its predecessors, that
being WorkShop and CrayTools. The SGI tools bring C++
and visualization strengths to the table; CrayTools brings
F90, scalability, and supercomputing requirements experi-
ence. Combining the strengths of the prior toolsets brings
you state of the art tools to help you gain insight into your
program’s behavior quicker than ever before.

• Caribou is very extensible. Caribou will provide access to
outside tools (for example, data visualizers). It will have a
scripting language to allow users to automate repetitive
tasks. It has been designed such that future enhancements
within the tool will be easier than in prior tools. This way,
new functionality can be added to Caribou instead of having
to create new tools.

There are no plans to release Caribou on Cray MPP or PVP
arcitectures. Caribou is currently under development, and is
expected to Beta by the end of the year. It will release sometime
in the first half of 1998.

