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Abstract

We present in this paper an evaluation of the performances of communication and computations on
the CRAY T3E. We have implemented all the main communication schemes (point-to-point and col-
lective ones) using all the message passing libraries available on the target machines. We have also
implemented two basic numerical kernels (FFT and CG) in order to evaluate the computation perfor-
mances and the capabilities of communication overlapping. All these benchmarks results are compared
with the ones obtained on T3D.

Keywords: Overlap of communications - Efficient parallel numerical kernels - Benchmarks of parallel
distributed memory machines.

1 Introduction

Most existing benchmarks are composed of numerical kernels and applications (e.g. NAS, LINPACK bench-
marks) [3, 13, 23, 20, 25]. The purpose of these benchmarks is to implement and to optimize their different
components on different parallel machines, and to compare the performances obtained. This methodol-
ogy does not distinguish the communication cost from the computational cost. Some benchmarks include
communication performance evaluation [1, 2] or comparisons of communication performances of different
machines [16] but they are restricted to point-to-point exchange communication performance measurement.
Moreover there exists at present few studies on the modeling of performances of communication [22, 29] and
a slightly greater number on the influence of the hardware on the communication mechanisms [32, 28, 30].
The latter type of study is carried out at a deeper level and is therefore interesting for the understanding of
the fine mechanisms of communications.

However, it is important to have a good evaluation of the communication cost in a parallel application
at a user level to determine if the efficiency can be improved by communication optimization. Moreover, it
is useful to have a good evaluation of the communication performances in order to design efficient parallel
algorithms which use overlap of the communication overhead [7, 6]. Most parallel numerical applications
can be split in a succession of elementary computation kernels. An optimization of these kernels increases
the performances. But, it is then necessary to minimize the communication time induced by the parallel
versions of these kernels on a parallel distributed memory computer. Indeed, during communication phases
processors do not compute because of the synchronism of the communication. But, in some cases the
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use of non-blocking communications is not sufficient, especially when the sender processor have more
computations than the receiver. There exists two solutions, which are not in opposition, for reducing the
communication time: optimizing the communication rate or overlap the computations with communications.
We apply these two solutions on two numerical algorithms namely the Conjugate Gradient algorithm, on
which we have optimized the communications, and Fast Fourier Transform algorithms with overlapped
communications.

2 Communication benchmarks

We present in this section some results on communication benchmarks, to determine the main communica-
tion parameters using message-passing libraries (PVM, MPIl and Shmem on the T3D or T3E [12, 11]), and
some standard collective communications which are used in parallel numerical kernels.

In most of actual distributed memory parallel machines, the time for sending a messageobsize
tween neighbor processors is modeled by.+ L7., whereg. is start-up time (or latency) angd is the
transmission rate [18, 19]. We first present a ping-pong benchmark [1] in order to determine the latency (
and the transmission rate.].

OTO routines

0.007
MPI T3E —
0.006 MPTT3D
PSEND T3E —=
0.005 PSEND 3D - - -
0.004
Times (sec.)
0.003
0.002
0.001 | ——
e e
0 L
0.0e4-00 5.0e4-04 1.0e405 1.5e+05 2.0e+05

Size in Byte

Figure 1:Results of the ping-pong benchmark

We summarize in table 1 the basic communication parameters of the Cray T3D and T3E using PVM,
MPI and Shmem with 00 K Bytes message sizes .
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Figure 2:Results of the ping-pong benchmark (zoom)
Machine 3. 1/7. Bandwidth | % Peak
pusec | M Bytes/s | M Bytes/s
T3D PVM 35 41 82 27
T3E PVM 80 135 270 45
T3D Shmem| 14 110 220 73
T3E Shmem| 27 167 334 56
T3D MPI 135 35 70 23
T3E MPI 110 127 224 37

We present on figures 3 and 5 some experiments of collective communications which can be found
in most of parallel numerical kernels, namely: broadc&&auss elimination and matrix-product), total

Table 1:Basic communication parameters

exchangé (matrix-vector product) and multi-distributidmatrix transposition).

Lor One To All
2or All To All

or Personalized All To All
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Braodcast routines on 16PEs
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Figure 3:Results of broadcast on the Cray T3D and T3E
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Figure 4:Results of broadcast for small sizelof

The gap on figures 4 and 2 denotes the fact that above a given size of message to send, the routing system
generates two requests to achieve the communication. However the times of these collective communica-
tions are easily modeled.

To underline the network contention, we present in figure 5 the modeled execution time of a matrix
transposition of size x n on the T3E , which corresponds to a personalized all-to-all.
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ATA routines on Cray T3E
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Figure 5:Results of ATA using MPI collective communication on Cray T3E

To summarize, we obtain about a factor 2 between performances on Cray T3D and T3E. We can no-
tice that, as for T3D, MPI is more efficient than PVM for collective communications. Although, some
contentions problems appear using optimized communications routines.

3 Computational performances of numerical kernels

In this section, we denote by the number of processors, ands the matrix and/or the vector size.

3.1 Description
3.1.1 Conjuguate Gradient kernel

The main effort to provide for parallelizing a conjugate gradient algorithm consists in designing efficient
parallel versions of the matrix-vector and dot products [10, 15, 17].

The first idea to parallelize the matrix-vector product: A x z, is to achieve a collective communi-
cation such that each processor holds a full copy.ofThen, the computation can be done in parallel on
each processor. This version is efficient for dense matrices. The pseudo-code of this algorithm is described
below (We suppose that is a squared matrix of size, distributed using a row wise allocation onfd
processors [8]).
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double* Matrix-Vector(d,z, 3 ,n)
doubleA[ %, %]1;
doublex[£];
int 2m;

double xGlobp];

XxGlob = Collecteg,P);
return (4 x xGlob);

1

On the contrary, for sparse matrices this kind of algorithm is catastrophic. Indeed, as well as each
processor holds a full copy of vector the number of elements af needs to compute the local product
is very small in comparison of the size ©f In fact, each processor has to communicate with only 2 or 3
neighbors to achieve its local product.

Thus we have implemented a method, called the inspector/executor method, where only the necessary
communications are pre-computed by the Inspector and achieved before each product by the executor [31,
27]. Thus, only the needed data for the matrix-vector product are exchanged (see figure 6).
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Figure 6:Principle of the Inspector/Executor method.
This method leads to near optimal parallel matrix-vector product.

In order to accelerate the convergence of the conjuguate gradient, it is compulsory to precondition the
matrix A [26]. Among all the existing preconditioners, the SSOR one is one of the most efficient [26].
However it is very inefficient in parallel, since it is based on the solving of triangular systems which is an
intrinsically sequential process. So, we have adapted this algorithm in order to avoid all the communications:
the preconditioner is only applied on local block of the mattiolds by each processor. This leads to a
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less efficient preconditioner (the number of conjuguate gradient iterations increases) but which is optimal
from the parallel point of view. As we will see on the experimental results we obtain very good efficiencies
using this kind of method.

3.1.2 FFT kernels

Sequential algorithms

The Discrete Fourier Transform (denoted DFT) of a real (or complex) veaibsizen is the vectorX,
of sizen, defined by :

n—1
) . _ 2imjk .
X; = E rpw’® where WK =e T and 2= -1
k=0

The first algorithm of Fast Fourier Transform (denoted FFT) was proposed by Cooley and Tuckey. Since
a lot of variation have been deducted from the original algorithm [21]. They only differ by the way of storing
intermediate data. The basic idea of these algorithms is the splitting of data:eéntoytwo subsets at each
step of the algorithm, and combined them usiruéerfly scheme

Let us consider a square matrixof sizen. We denote byl the Fourier Transform of matrix.
The computation problem of the bi-dimensional DFT is given by the following equation:

A(j,,d,) = Z_: (Z_: Ak, k,) x exp ((—in(kl.z'll +k2.j2))))

k‘1:0 k‘2:0

This equation can be transformed in order to come down to computation of two classical mono-dimensional
DFT:

= (—2irk, j,)
A(j,,0n) = klZ::O exp (T) x Y, (k,)
WhereY; (k,) is the mono-dimensional DFT with respect to the varidhle
The algorithm of bi-dimensional FFT is straightforward: compute mono-dimensional FFT on both dimen-
sions.
Parallel monodimensional algorithm

The parallel algorithm can be decomposed into two main phases. The first one, consists in computing
partial mono-dimensional FFT on each processor. The second one is a distributed phase during which each
processor exchanges its data and updates it. ThgséP’) exchanges correspond to the butterfly scheme.
Program of processaris described below.
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Routine fftldpar(, n, P)
begin
* Compute fftld on my data of size*/
fftld loc(z,%
forl = 0tolog, (P) —1do
/* Exchange block with processeorp [ */
Exchangef e ec,.%.q @ I)
/* Compute butterfly-operation(my block, received block) 7
Update@@‘recv l]n?)
endfor
end

~

This algorihm can be improved using communications and computations overlapping. This algorithm
corresponds to strongly dependent schen and thus it is not possible to overlap the communications [4,
24]. Then the idea is to change the algorithm in order to obtain new dependence scheme between data and
computations. The principle of this new algorithm is to redistribute the data as soon as the computations are
non local anymore [14] (see right scheme on figure 7).

Local Phase Distributed Phase Local Phase Redistribution Local Phase

Figure 7:Execution schemes of classical parallel and with intermediate data redistribution algorithms on 4 proces-
sors and vector size equals to 8.

This new dependence scheme corresponds tiotarmediate redistribution scheme([7], and then it is

easy to overlap the communication by chaining the sending of partial results with local computations [5].
We present on figure 8 the execution scheme of this algorithm. The butterfly in dotted lines corresponds to
the one which has to be computed first, since the resulting data have to be sent to another processor.
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0 0 0
8 > s 2

PO 4 2 4 1

-z e = _=_
2 2 X 7~ 8
—r o =<

Lo == |8 | ==

e e\ =
T 1 %

o 3 >< | : =&
= == | =

Figure 8:Execution scheme of the algorithm with overlapping.

Parallel bidimensional algorithm

e Transpose Split Method (T8, 9]

The matrixA is distributed using aow-wiseallocation [8]. The algorithm is a direct adaptation from
the sequential algorithm: after having computed mono-dimensional FFT on each row, a transposition is
done on the matrix. Then, another mono-dimensional FFT is computed on the resulting matrix. Finally a
new transposition is done on the matrix in order to have the transform matrix at the same position as at the
beginning (see figure 9).

- A A4 7 -
E—— vz P E—
E— vz P E—
E— 7 7 E—
sequential fitld transposition sequential fftld

Figure 9:Transpose split method for computing bi-dimensional FFT

In the Transpose Split method, for a row-wise distribution of the matrix, the transposition corresponds
to a “ personalized all-to-all , also called “ multi-distribution ” [19]. If this operation is not overlapped, the
communication overhead can lead to poor efficiencies. We can improved the original algorithm by overlap-
ping the computation of the local mono-dimensional FFT and the matrix transpose. We can transpose a set
of s rows, as soon as it has been computed [6].

e Local Distributed Method (LD)6, 9]

The data are allocated using@wv wiseallocation. First we compute mono-dimensional FFT on each
rows, but in spite of transposing the matrix, we compute a distributed mono-dimensional FFT on each
column of the resulting matrix (see figure 10)

% M — ]
H |
sequential fftld distributed fft1d

Figure 10:Local distributed method for computing bi-dimensional FFT
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The second phase of the LD algorithm correspondsrépaated phase scherf¥@, so communications can
be overlapped during this phase, indeed two blocks of columns can be computed at the same time. Thus it

is possible to update the first block while exchanging the second one [6].

3.2 Results
3.2.1 Mono-dimensional FFT
We present some results of experiments on the Cray T3D using PVM on table 3.

Without overlap With overl ap || % of overlap
n Ty T T T
16384 124 | 0.44| 1.68 151 39%
32768 2.88 | 0.75| 3.63 3.21 56%
65536 7.69 | 1.32| 9.01 8.13 67%
131072 || 16.00 | 1.80| 17.80 16.50 72%
262144 || 38.00 | 2.20| 40.20 39.00 55%
524288 || 79.70 | 6.70| 86.40 81.60 72%
1049376|| 166.90| 10.8| 177.70 167.50 95%

Table 2:Comparison of algorithms with redistribution on T3D using 32PEs.

Even if the gain concerning the total execution time with the overlapped version of the algorithm is
not great, we can overlap almost all the communication time. Moreover, this kind of numerical kernels is
usually called many times during one execution of a parallel application, and thus it is very important to

have good efficiency for this kind of numerical kernel.

On Cray T3D | On Cray T3E
n Without Overlap| With Overlap | Without Overlap|| With Overlap
16384 1.68 151 1.36 1.0
32768 3.63 3.21 2.37 1.8
65536 9.01 8.13 4.47 35
131072 17.80 16.50 8.98 7.2
262144 40.20 39.00 23.31 20.0
524288 86.40 81.60 76.67 72.50

Table 3:Comparison of performances between Cray T3D and T3E using 32PEs.

As one can see, we obtain a speedup factor less than 2 between the T3D and T3E. Moreover, the gain
mesured with the overlapped version is better on the Cray T3E.

3.2.2 Bi-dimensional FFT
Some experimental results of the TS algorithm are given in table 4 for the Cray T3D and in table 5 for the
Cray T3E using PVM.
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without overlap

with overlap

% of overlap

n T, T T T

512 || 0.490 | 0.260| 0.750 0.550 7%
1024 || 2.140 | 0.900| 3.040 2.170 97%
2048 || 10.190| 3.210| 13.400 9.100 135%

Table 4:LD algorithm on T3D with 16 processors.

without overlap with overlap | % of overlap
n Ty T T T
512 || 0.149| 0.07 | 0.158 0.129 42.86%
1024 || 0.386| 0.279| 0.665 0.548 43.01%
2048 || 1.652| 1.187| 2.839 2.336 42.12%

Table 5:LD algorithm on T3E with 16 processors.

The parameters of overlapping in these experiments have been determined by experimentations (see fig-
ure 11). We can notice that the percentage of overlapped communications in the LD algorithmis greater than
100% (see table 4). Indeed, the overlapped version of the LD algorithm uses the cache in a more efficient
way than the non-overlapped version (due to the granularity of computations) and thus the computation time
in the overlapped version is smaller. This also explain that the percentage of overlap is less important on

Cray T3E.

FFT2D with overlapping communication on 16PEs
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Figure 11:Execution time in function of the packet size on Cray T3E

3.2.3 Conjuguate Gradient

As one can see, we obtain (see table 6) better performnances using the Inspector/Executor algorithm. More-
over, the version is much more scalable than the classic one.
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SpeedUp

0 1 1 1 1 1 1

On Cray T3D On Cray T3E

Version 16PEs| 32PEs| 64PEs|| 16PEs| 32PEs

Insp/Exec|| 16.44 | 11.475| 7.035 || 5.889 4.5
Classic || 25.298| 18.890| 16.24 || 11.203| 9.812

Table 6:Performances of the two versions of Conjuguate Gradient using MPI
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Figure 12:Execution times of the CG kernel on T3D and T3E
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Figure 13:Speedups of the CG kernel on T3D and T3E
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On figures 12 and 13, we compare execution times and speedups on the conjuguate gradient algorithm
on Cray T3D and T3E. As one can see, the behavior is identical. Although, we obtain an effective speedup
between 2 and 3 between the two Cray MPP.

4 Conclusions

We have presented in this paper some communications and computations benchmarks on Cray T3D and
T3E.
From these experiments, one can notice that the balance between the communications and computations is
quite the same on T3D and T3E.
We can also observe an improvement of the performances both communications and computations on T3E,
since we obtained at about a factor between 2 and 3 compared with T3D.

Concerning collective communications, we have noticed a real improvement using MPI on T3E which
can induced some cotentions which are negligible compared with the performances obtained.
Using the FFT benchmarks, we have underlined the capabilities of overlapping communications for both
architectures. Moreover, it seems that the cache-missed which where very important on Cray T3D have
decreased on T3E. This induces a better improvement of computations performances as for instance on the
FFT kernels.
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