

CUG 1997 Spring

 Proceedings

239

The cost of interactive jobs on supercomputers

 Allen B. Downey - Victor Hazlewood

ABSTRACT:

In some supercomputing environments, users are required to run editing,
compiling and data-cleaning tasks on a workstation, and use supercomputers only for jobs that
require them. This restriction is intended to improve the performance of the supercomputer, but
it causes significant inconvenience for users. In this paper, we examine the workload submitted
to the Cray C90 at the San Diego Supercomputer Center, and observe that ``workstation jobs''
consume less than 20% of the cycles on these machines. We conclude that the cost of supporting
these jobs is small compared to the productivity improvement it provides for users.

Introduction

Many supercomputer users have a workstation that they do
not share with other users. For some applications, the perfor-
mance of these workstations is as good as that of a supercom-
puter. Since the cost of a workstation cycle is so much less than
the cost of a supercomputer cycle, it may seem like a good idea
to encourage users to limit their use of supercomputers to jobs
that exercise the particular strengths of the supercomputer.

Some supercomputer sites have taken explicit steps to
discourage users from running interactive jobs on supercom-
puters. In this environment, users are expected to edit (and
possible compile) their codes on workstations, execute on the
supercomputer, and then perform data interpretation and
various house-cleaning activities on workstations. In some
cases, interactive jobs are not explicitly forbidden on the super-
computer, but the system may be configured to provide poor
performance for them.

The advantage of such a system is an effective division of
labor. Each job is handled by the most appropriate computer; the
one that can run the job most economically. Of course, the
disadvantage is that it imposes a burden on users, increases the
number of steps in the edit-compile-debug cycle, and generally
reduces productivity.

At the San Diego Supercomputer Center, we are trying to
create an environment in which users can bring new applica-
tions to a supercomputer with minimal costs not only in terms
of programming effort, but also in terms of user education and
the other overheads associated with learning a new computing
environment. Toward this goal, we try to provide a software
environment on supercomputers that is indistinguishable from a
workstation environment except in performance. Thus, super-

computers here are configured to support interactive jobs, and
users are not discouraged from using them for all stages of the
edit-compile-debug cycle, as well as other interactive activities.

In this paper, we will examine the impact of this decision by
studying the workload running on the Cray C90 at SDSC. We
would like to know what cost we are paying for supporting
interactive jobs, and what would be the potential benefit of
moving those jobs onto workstations. We consider two
resources, CPU cycles and memory, and conclude that in both
cases, the cost of supporting these jobs is small.

Allocation of cycles

We would like to know what fraction of the jobs that ran on
the C90 could (or should) have run on a workstation, and what
fraction of the supercomputer's time was spent on these jobs.
We find that although the vast majority of jobs are ̀ `workstation
jobs,'' these jobs consume a small fraction of the total number of
cycles.

We define a workstation job, conservatively, as any job that
consumes fewer than two hours of CPU time, and that requires

less than 128 MB

1

 of memory. Our data are taken from the
output of the csafef utility, which reports the resource use, dura-
tion, and other accounting information for each job submitted to
the system. The particular version of this utility we use has been
modified here at SDSC.

Table 1 shows a summary of the data from February, March
and April of 1994, 1995 and 1996. Total CPU use is the sum of
the CPU times of the jobs, reported in millions of seconds (Ms).

1

 All memory measurements in this paper are in power-of-two units, so 1 MB =
1,048,576 bytes, etc.

240

CUG 1997 Spring

 Proceedings

Utilization is just the ratio of total CPU use to the duration of the
interval (three months); it does not take downtime into account.]

Table 1.

 CPU use by workstation jobs.

The C90 is becoming increasingly loaded over time. The
number of jobs and the total CPU use of those jobs nearly
doubled during the two years of our study. At the current level
of utilization, the performance of the system as seen by users has
begun to drop. Queue times have been increasing slowly for
some time. Also, we see that the vast majority (99.4%) of jobs
are ``workstation jobs'', and this fraction has been constant for
some time. Thus it may appear worthwhile to move some of this
workload to workstations, if possible.

The problem is that workstation jobs account for a small frac-
tion of the C90's total time (less than 20% and falling). This frac-
tion is not insignificant, but it is probably not possible, in
practice, to shift this workload onto workstations. In the first
place, our definition of a workstation jobs is deliberately
generous. Secondly, we have ignored the effect a workload
increase would have on workstation performance. This effect
might be substantial, especially since a job that runs for 2 hours
on the C90 is likely to run much longer on a workstation. Finally,
we have ignored the overhead of supporting this division of
labor; for example, the amount of time spent running ftp would
be likely to increase in such an environment.

It is interesting to examine the characteristics of the ``super-
computer jobs'' in our workload. We divided these jobs into three
groups, depending on their resource requirements. Table 2
shows how many jobs are in each group, and how much CPU
time they consumed.

Table 2.

Classification of supercomputer jobs.

Of the supercomputing jobs, roughly half are big CPU users,
and half are big memory users. But again, CPU consumption is
dominated by long jobs.

Allocation of memory

The other resource workstation jobs consume is memory.
Although an interactive job may not use many cycles, it does
tend to be resident in memory for long periods, and may prevent
some big-memory jobs from running.

In order to measure this impact, we took periodic snapshots
of the c90's allocated memory every fifteen minutes for one day
(Thursday, October 3, 1996). Each snapshot used ps to count the
number of jobs in memory, the number of jobs in swap space,
and the memory size of each job.

On average, there are 100 jobs in physical memory and 515
jobs swapped out, so there is considerable contention for the
available memory. Of the 2 GB of physical memory, typically
1.9 GB are in use at a time; in other words, 95% of the memory
is full 80% of the time.

What fraction of this memory is used by interactive jobs? We
looked at the most common executable names and picked out the
ones we could classify as shells, editors or compilers. The shells
were csh, ksh, tcsh, sh and bash. The editors were vi and emacs.
The compilers were cc, f90, cpp, fpp, cf77, cft77 and cft90. Of
course, there are other editors, compilers, etc., but we only chose
the executable names that appeared frequently enough to affect
the results.

On average, the shells are using 8.3 MB of physical memory,
the editors 2.3 MB and the compilers .41 MB. The total memory
use of these interactive jobs is 11 MB, about 0.5% of the total.
So while it would be useful to reduce memory contention, it does
not appear that we can do it by expelling interactive jobs.

One of the ways UNICOS 9.0 reduces the memory use of jobs
is by allowing multiple copies of the same executable to share
text. For each of the executable names that appeared in our snap-
shots, we used which to locate the executable, and file to see if
it supports shared text. Of course, many of the names in the snap-
shots are not in the path of the environment where we ran this
experiment, so we may have missed some shared-text executa-
bles.

Nevertheless, we found the following shared-text executa-
bles: csh, ksh, sh, vi, emacs, view. In the snapshots, we counted
the number of times each of these names appeared, and esti-
mated the total memory saved by avoiding redundant text. On
average, we save 5.9 MB, almost 0.3% of the total. These
savings are insignificant because (1) there are few shared-text
executables, (2) the executables that are shared-text tend to be
small, and (3) there are seldom many copies of large executables
in memory at the same time.

One exception to the last observation is mppexec, which was
used to spawn parallel jobs on the Cray T3D that was (until
recently) hosted by the C90. Since there was one copy of
mppexec for each job on the T3D, it would have saved a signif-
icant amount of memory if mppexec had been shared-text (but it

CUG 1997 Spring

 Proceedings

241

was not). In the snapshots, the average time savings would have
been 56 MB, or almost 3% of the physical memory.

Conclusions

One of the long-time goals of supercomputer centers is to
facilitate the development of new applications on supercom-
puters by providing a productive development environment for
parallel programmers. In order to address this goal, SDSC
decided very early that it is necessary to support interactive jobs
on supercomputers, including even some jobs that would
achieve better performance on workstations (for discussion, see
[2]).

In this paper, we have evaluated the costs imposed by
supporting these jobs and found that (1) interactive and short
CPU-bound jobs consume less than 20% of the CPU cycles, and
this fraction is falling over time, and (2) the memory use of inter-
active jobs is insignificant, although they may account for a
significant fraction of swap activity.

In order to further integrate workstations and supercom-
puters, SDSC has recently installed the Network Queueing Envi-
ronment (NQE) from CraySoft. Hazlewood describes this
installation in [1]. One unusual feature of this environment is
that it provides common file space that is mounted from both
supercomputers and workstations. Thus it is convenient for users

to edit and compile programs on their workstations and execute
them on supercomputers. Furthermore, we provide incentive for
them to do so by charging higher rates for interactive jobs on
supercomputers. Given this ``carrot and stick'' approach, we
expect the number of interactive jobs on supercomputers to
decrease over time.

Ironically, we also expect to see batch jobs running on work-
stations. NQE provides a mechanism to run batch jobs (both
sequential and parallel) on networks of idle workstations. This
mechanism may make it possible to separate the workload into
three components: interactive jobs, which will run on the user's
workstation; small batch jobs, which will run on clusters of
workstations; and large batch jobs, which will run on supercom-
puters. If the supercomputer workloads contain a larger fraction
of large, long-running jobs, effective scheduling will be easier
and it is likely that the utilization of these systems will increase.

References

1 Victor Hazlewood. Cluster computing: a survey and tutorial. In Sys Admin,
pages 27-43, March 1997.

2 Wayne Schroeder and Michael Wan. Experience with the UNICOS 6.1
memory scheduler. In Proceedings of the 29th Semiannual Cray User Group
Meeting, April 1992.

