

J90 Job Scheduling
Roger G Evans
CLRC Rutherford Appleton Laboratory,
Chilton, OX11 0QX, U.K.

r.g.evans@rl.ac.uk
G Timothy Folkes
CLRC Rutherford Appleton Laboratory,
Chilton, OX11 0QX, U.K.

g.t.folkes@rl.ac.uk
Michael Armstrong
SGI/Cray UK

mtja@cray.com

ABSTRACT:
We have reported at earlier CUG's on our needs to schedule a mixture of single CPU and parallel jobs on a
J932. The technique using real time process scheduling has worked well in practice with the main problem
being the overhead of moving the real time processes into low memory. We have investigated this effect
further and believe that given the widespread needs to run job mixes similar to our own there is a need to
reduce the system overheads of the present real time scheduling and memory management. The general need
for this scheme of job management extends to other shared memory machines with a large number of CPUs
and we hope that similar facilities will be available on future SGI/Cray machines with virtual memory
management.

KEYWORDS:
Parallel, Scheduling, Batch, J90

Background

CLRC Rutherford Appleton Laboratory is one of two centres (the other being EPCC Edinburgh) providing
supercomputing resources to the UK academic community. CLRC operates a J932 with 8 GByte of memory (4 GByte
for most of the work reported here), 216 GByte of DS30 disks and 100 GByte of third party SCSI disks. User data is
managed by DMF and by locally written Virtual Tape Protocol (VTP) software using respectively a STK4400 and
IBM 3494. There are more than 1000 registered users, about half of them active and essentially all are remote from the
Rutherford Appleton site.

The workload is varied and ranges from lattice QCD via chemistry and engineering to galactic modelling. The largest
single group of users is the environmental modelling community with the UGAMP (Universities Global Atmospheric
Modelling Project) being the largest single project.

Chemistry and engineering users are large users of commercial application software but for the majority of our user
community the main application is the Fortran compiler! The current distribution of user demand is shown in Figure 1.

Figure 1 shows the distribution of J90 usage amongst programme areas.

Single Threaded and Parallel Jobs

The companion centre at EPCC Edinburgh operates a 512 node T3D for essentially the same body of academic users
and the majority of highly parallel applications will of choice use the EPCC resources. The remaining user community
is a mixture of users with modestly parallel Fortran applications (scaling to perhaps 16 CPUs), users of commercial
applications such as Gaussian that scale to maybe 8 CPUs and code which is largely single threaded either because it
is inherently serial, is transient in nature (eg it is used to analyse bulk data generated elsewhere, or is associated with
a modest sized project where the human cost of developing a parallel code is not matched by the savings in
computing costs.

For the single threaded jobs, the J90 single CPU performance is often little better than a local workstation and we are
seeing a definite fall off in demand for our J90 resources. The response to a recent survey indicates the urgent need to
offer computational performance at a national centre which is much greater than that available in UK university
departments.

The J90 does become a significant computing resource when operated as a parallel machine and this is further
enhanced by our recent memory upgrade from 4 GByte to 8 GByte. Our workload is thus a mix of legacy single
threaded applications, applications requiring 4, 8 or 16 cpus and each job class has a spectrum of memory
requirements. The user base is small enough that the character of the workload changes dramatically from week to
week as groups become active, prepare for conferences and go on vacation.

NQS Scheduling

The standard NQS parameters and complexes manage most aspects of our job mix but we have been forced to write a
NQS 'pre-processor' known locally as IQS (Input Queue Scheduler) to restrain the users who insist on submitting 40
jobs to the same queue at one time. Within each queue IQS operates a 'round robin' on each user ID so that a second
user will get a job to run after the first job of the 'hog' user rather than after the 40th.

Parallel Jobs and 'gded'

It became particularly clear on our overloaded Y-MP8I that it was pointless to ask users to develop parallel
applications to use most of the memory or temporary disk space only to run the job and have it run on one or two
CPUs because the other users were busy running small jobs. In conjunction with Cray UK we looked at options for
prioritising CPU allocation so that jobs in specifically parallel queues would have a high probability of receiving the
number of CPUs actually requested. Initial attempts to do this by re-assigning nice values were not succesful and the

overall requirement is constrained by the lack of access to Unicos source code for J90 sites.

Eventually we developed a wrapper program known locally as gded which is an extension of the Unicos ded
command for running small test jobs on all CPUs at the same time. gded runs its argument as a Unicos real time
process having examined the NQS queue from whence it came in order to set the number of CPUs appropriately. gded
operates on queues for 4, 8 and 16 CPUs selected via the qsub -la multiN option and is a null command in other NQS
queues.

Previous Experience with gded

We reported at the last CUG1 the initial results from gded which show that it met our requirements of delivering 90%
of the CPU resource requested and operated fairly on a lightly loaded and heavily loaded machine. Our scheduler has
run routinely for the last six months with a maximum of two 'multi8' jobs and has assisted in keeping the machine well
loaded while delivering excellent application performance to the users. We feel confident in extending the range of
multiN job mixes allowed to the users and have not encountered any serious problems in its use.

The limitations of gded are few: there is a question on memory management overheads as described in more detail
below, and there is a loophole for users who still have old parallel jobs with calls to the multi-tasking (macro-tasking)
library. Old multi-tasked code spawned a number of distinct processes and each process is then able to acquire
NCPUS as identified within the gded environment. An old style macro-tasked code that initiates M processes can
obtain M*NCPUS CPUs in an extreme case. We have one such legacy application on the J90 but its owner has been
very restrained and has not abused the system. gded works equally happily with message passing parallel codes using
MPI since these appear to Unicos as auto-tasked binaries.

Further Investigations of gded performance

We observed in the early test use of gded that when successive Multi8 jobs ran there was a slack period between the
two jobs as shown in the CPU usage graph of Figure 1, and an increase in swapping as shown in Figure 2. It appeared
that either there was a significant delay in starting a real time job or there were inefficiencies in memory management
at job start up and shut down. The crude initial observations showed a period of several minutes of reduced CPU
activity between two real time jobs and it was not clear a-priori whether this was start up or shutdown overhead or a
mixture of both. We also speculated that inappropriate segldr settings could result in an excessive number of sbrk
calls for these large memory programs and looked to a possible revision of segldr defaults for jobs in the MultiN
queues to alleviate the problem.

Figure 2 shows the low cpu activity between adjacent parallel jobs around 14.00 and 17.00 GMT

Figure 3 shows the increased swapping activity while the parallel jobs are running.

Since the last CUG we have looked more carefully at these overheads using a mixture of small and large memory jobs
and running on a busy and on a near-empty machine. The application that we have used is a small (500 lines of
Fortran 77) program that calculates coupled wave propagation in a relativistic plasma. It has the benefit of being well
vectorised and parallelised and shows typically 7.8 times speedup on 8 CPUs. Any single threaded work at start up and
shutdown is minimal. The memory size is altered simply by changing array sizes in space and frequency and scales
from 4 MWord to 150MWord (which is the default limit for our Multi8 queue).

The test jobs are run as part of the normal batch queues and the script starts sar monitoring at 10 second intervals just
before the executable starts. The benefit of getting the Fortran program to print its precise start and stop times was
appreciated only after our J90 had been upgraded to 8GByte of memory and it was not possible to repeat some of the
extreme cases.

The normal job accounting records give the effective number of CPUs delivered to the job and the total connect time.
sar -j run on the accounting file gives the number of 'shuffle' requests for moving real time processes in memory. From
the fully instrumented test program we observe that the 'shuffle' requests are coincident with the start and end of the
Fortran program within a second or so. Accordingly we have used the sar -j results to indicate the system request to
start the job and terminate its memory allocation and a comparison of this interval with the ja accounting of connect
time gives us our measure of overhead.

Figure 4 shows details of the sar reporting for a 150 MWord Multi8 job on a lightly loaded J90

In Figure 3 and Figure 4 we see the results of plotting the various sar options for CPU usage, memory usage and
'shuffles' as a function of time, firstly for a lightly loaded 8 Gbyte machine and secondly for a busy 4 GByte machine.
For some reason sar fails to gather data during the bulk of the running of the real time process but still gives good
data at either end. On the lightly loaded machine the timings are very tight: a shuffle is initiated, the memory
allocated increases, the job starts, (sar is silent), the job finishes, memory deallocates and the workload returns to its
previous level.

Figure 5 shows details of the sar reporting for a 150 MWord Multi8 job on a heavily loaded J90. The duration of 'connect'
time is shown but its absolute position is arbitrary.

On the busy machine there are many delays: a first 'shuffle' request begins 20-30 seconds of swapping before the
allocated memory increases; a 'shuffle' of unknown origin results in sar measurements reappearing; the elapsed time
before the allocated memory goes down is much greater than the connect time, and there is a period of low level
swapping before the job eventually terminates.

To sumarise the delays that we have observed we have encapsulated the 'overhead' into the difference between the

elapsed time from first to last 'shuffles' and the connect time given by ja (which is a measure of genuine cpu time
given to the job).

Our results show that there is little overhead on an empty machine, except for the 150 MWord job, on a busy machine
the overhead ranges from almost zero for a 4 MW job up to several minutes for the 64 MWord and 150 MWord jobs.
The results are shown in Table 1 and show a degree of scatter corresponding to varying workloads. Given the
granularity of the sar data, overheads of less than 10 seconds are not significant.

Table 1: Timings for several Multi8 Jobs

NQS ID Memory Connect Elapsed Overhead Note

99320 4 320 328 8 busy

99325 16 272 300 28 busy

99340 64 247 409 162 busy

99379 150 232 615 383 busy

1446 150 243 594 351 busy

1447 64 260 434 174 busy

1448 16 242 396 154 busy

1449 4 282 283 1 busy

5287 4 296 302 6 quiet 8G

5288 16 255 260 5 quiet 8G

5289 64 258 264 6 quiet 8G

5290 150 242 523* 281 quiet 8G

8648 150 236 480 244 quiet 8G

* This process showed unusual behaviour on termination and an elapsed time of 403 sec could be an alternative
interpretation of the data.

Five table entries refer to the 8 GByte machine where memory is generally under-allocated and for run 8648 we also
had a primary swap partition in memory for very small processes.

There is sufficient scatter to enable almost any conclusion to be drawn but we speculate that the runs 1446 - 1449 form
a reasonably self consistent set and we show in Figure 6 that the data is reasonably well fitted by a notional
'bandwidth' of around 2.2 MB/second which compares with a real bandwidth to the swap device of about 20
MByte/second. The most efficient swapping algorithm would show half of the peak swap bandwidth corresponding to
each process being swapped out and in only once and we conclude that the memory scheduling of real time processes
shows some scope for optimisation.

Figure 6 shows how the measured overheads approximate to a 2.2 MByte /second effective bandwidth

If we are correct in attributing these overheads to the time taken to move processes around in memory in order to load
the real time process in low memory then this is a significant overhead in using the gded real time mechanism to
manage the mix of single threaded and parallel work on a busy machine. No doubt the reasoning in requiring that real
time processes load into low memory is sound but we wonder if there may be some relaxation allowed in the context
of this requirement which is not strictly real time but rather to realise an identifiable priority processor set.

Conclusions

We are generally well pleased with the results of real time process scheduling and it is rapidly becoming indispensible
to our machine management. We encourage SGI/Cray to integrate this requirement into future version of Unicos and
cellular Irix since the power of multi-CPU supercomputers is only delivered into parallel jobs, but each job may only
be a fraction of the overall machine size. On the virtual memory architecture of say the Origin 2000 the need for
genuine movement of processes to low memory disappears and there is the potential for the real time mechanism to be
used efficiently as long as it is designed in early enough.

References

[1] Tim Folkes, Roger Evans and Mike Armstrong, Multi CPU pools in an NQS environment,Proceedings Fall
1996 CUG, page 155

Author Biographies

Roger Evans manages the J932 and DEC 8400 services at Rutherford Appleton Laboratory
Tim Folkes is the senior systems analyst for the J932
Michael Armstrong is a software analyst with SGI/Cray UK.

