
135

Implementing Network Attached Storage

Ken Fallon
Bill Bullers
Impactdata

Abstract
The Network Peripheral Adapter (NPA) is an
intelligent controller and optimized file server
that enables network-attached processors to
unlock the potential of distributed data access
while enjoying the benefits of centralized
management and control. Optimized for high-
performance and peer-level storage, the NPA
is capable of linking virtually any workstation,
high-performance computer and/or network
with any type of storage device.

By connecting high-performance disk arrays
and tape drives to high-speed networks, the
NPA creates network storage and allows
computers to access and share data. The NPA
is embodied within the Distributed Storage
Node Architecture (DSNA) of a network-
centric computing and data storage enterprise.
Initial integrations target Silicon Graphic Inc.
(SGI) installations then integrate data sharing
between SGI and CRAY systems.

Introduction
The cutting edge of business, science, and
industry, driving for computing, visualization,
communications and information content are
constantly creating challenges in data and
information storage and retrieval processes.
Context properties and intelligent formats for
management agents are being applied to data.
The ever increasing demand for managing
larger quantities of data, and the growing
requirement for rapid, distributed, global
access is forcing the exploration of new
approaches to handle and process data to be
stored, searched, mined, and made available.
This demand is sponsoring the evolution of
data storage products that insulate users from
storage location, media, and protective
services, and is bringing about the concept of
enterprise wide network computing.
Retrieval, archive, backup, hierarchical
storage management applications, and
distributed objects are evolving but,
intelligence within the data storage devices
and media has not been developed. As a
result, there is an overwhelming demand for

more sophisticated storage servers and
intelligent storage media controllers.
According to Computer Client / Server Journal,
“A recent study of 125 companies performed
by Strategic Research of Santa Barbara,
California, showed that by recentralizing their
data storage, companies were able to save an
average of 55% over the cost of decentralized
storage systems and procedures.”

This paper describes an architecture developed
by Impactdata that provides intelligence at the
storage device level and enables network
attached processors to access and share data,
unlocking the potential for distributed data
access with central management and control.

Distributed Storage Node Architecture
Distributed Storage Node Architecture
(DSNA) was created to facilitate data
management, data storage, data sharing, data
archive, distributed objects, backup and
retrieval. DSNA was developed with the
flexibility to expand with the needs of high
performance computing and high speed
network users. Network file systems, like
NFS, operate by copying data through multiple
memory levels from the client to the file
system, to cache, to user space, using small
datagram block sizes. As a result they are
inherently unable to provide high-performance
network data flows. These systems typically
apply stateless protocols, with unmanaged
concurrency, that requires the full intelligence
including file serialization to be provided by
the client. NFS clients must be ‘smart’
because NFS servers are ‘dumb’. DSNA is
designed with an entirely different structure
that integrates file system intelligence into the
server and operates with peer-level data flows
to deliver large blocks and avoid multiple
memory transfers. DSNA is a solution to the
limitations of sending large files at high
speeds. Applying DSNA protocol, a set of
drivers is implemented with a Common
Peripheral Interface (CPI), to utilize high
speed networks effectively. There are no
application level client drivers required.

136

DSNA is structured to be a complete storage
system solution that provides the following
benefits:

• A Coherent and Cohesive Network
Storage Environment

• Intelligent Storage and Data Mining
• The Management of Data Stores
• Handling Increased Network Bandwidth

and Response Times
• Storage Servers and Controllers that

Provide for Rapid Growth and Change
• Support for Evolving Distributed Object

Storage

The implementation of Distributed Storage
Node architecture is based on ‘Personality
Modules’ that support distinct network and
storage device interfaces. These Personality
Modules are used to achieve fabric-
independent integrations for high-performance

and traditional networks. DSNA can
accommodate interface modules for
connection to HIPPI, Fibre Channel, ATM
OC-3/12, SCSI, Gigabit Ethernet, and even 10-
BaseT and 100-BaseT. Personality Modules
are integrated in a Network Peripheral Adapter
(NPA) and are connected together through a
PCI data bus. High-rate data transfer is
achieved by bus-mastering Personality
Modules. Taking advantage of memory buffers
built into the Personality Modules, the NPA
processor reacts to data transfer commands by
initiating Direct Memory Accesses (DMA)
data flow between the Modules and eliminates
multiple processor/cache read interactions
with the data. By circumventing the
processor, data-flows of up to 100 MB/s can be
achieved across the 32 bit, 132 MB/s PCI bus.

The simple diagram that follows shows the
internal structure of the NPA.

Device
Interface
FC-AL
SCSI
Other

P
E
R
S
O
N
A
L
I
T
Y

R
A
M

P
E
R
S
O
N
A
L
I
T
Y

R
A
M

P
C
I

P
C
I

Network
Interface
FC
ATM
HIPPI
Ethernet
Other

Ports
Processor

Cache

The PCI bus-mastering technique achieves
high-rate data-flow while significantly freeing
the burden on the processor and operating
system, and allows a low cost NPA
implementation with ‘Wintel’ technology. The
use of personality modules achieves
significant flexibility for the DSNA to provide
data storage in an open system context. The
physical level operation and structure
embodied in the NPA is a significant building

block, but is only one of several major
elements that enable DSNA to provide high-
performance distributed data storage.

Elements of DSNA
The Impactdata implementation of DSNA
creates a storage node with a central Storage
Node Controller (SNC), several Network
Peripheral Adapters (NPA’s) and attached
storage devices as shown.

137

High Speed Tape
Storage Node NPAs
Controller (SNC)

Disk Arrays

Tape Library
High

Supercomputers Speed
and Network

 Network Clients High Speed
Disk Array

Complete DSNA Storage Node

The Storage Node Controller is a high-
performance UNIX server used to increase the
processing power, capacity, throughput and
functionality of a DSNA node beyond the
capability of a single NPA. The SNC supports
the notion of distributed file management
across NPAs and provides the capability for
true managed file extent access concurrency
across clients. The SNC can be setup as an
applications server that provides Hierarchical
Storage Management with data archive,
backup, and disaster recovery processes. The
SNC can provide integrated storage
management as part of a ‘Distributed
Management’ methodology in which any
processor on the network can assert
management functions. Each processor
maintains its own management data, such as
operational status, configuration records, file
and media level storage statistics, alarms,
accounting and billing, and software update
facilities. Each processor can query every
other processor and display this management
information for each storage node. The SNC
can also be setup to act as a security server to
manage the security resources across a DSNA
network. Operator access requires ID and
password authentication with data access
restrictions by ID. C2 security and POSIX
compliance are provided in all processors.
The SNC will include distributed object
services with support for Object Request
Brokers as defined through CORBA and

ActiveX to promote open access to intelligent
storage.

A DSNA storage node implementation can
also be as simple as a single NPA that
provides intelligent network connected shared
data storage. The next diagram shows three
device types connected as separate DSNA
storage nodes.

The Common Peripheral Interface is
middleware that enables UNIX (and Windows
NT) clients to use and share network storage
as if it were locally attached. Used with any
application that reads and/or writes to locally
attached devices, the CPI converts
Input/Output (I/O) operations to DSNA
network commands and the DSNA protocol.
Users can take advantage of either a
‘transparent’ access to DSNA storage nodes or
through an Application Programmers Interface
(API), can apply a rich set of DSNA features
including metadata and local file
management. The DSNA protocol has as its
foundation the proven IPI-3 storage protocol
over which several extensions are specifically
designed to accomplish high-performance
network shared data storage.

138

Device drivers are provided for targeted
systems that transform standard file I/O
requests into DSNA protocol with CPI
commands and messages. These CPI drivers
provide a local file system connection through

defined mount points to DSNA storage nodes
with disk and tape media. Host application
programs only require modifications if the rich
DSNA feature set is to be fully exploited.

High Speed Tape

NPAs

Disk Arrays

Tape Library
High

 Supercomputers Speed
and Network

Network Clients
Independent DSNA Storage Nodes

The DSNA protocol and the CPI integrate a
metadata facility that collects useful
information about the files, the storage
devices, and the media. The DSNA Metadata
is a vital component of the DSNA file system.
The information is collected in real-time and
is available to DSNA utilities that use the
information to locate and manage directories
and files, support file access at the block
level, maintain file security and locking, and
provide operational statistics.

Common Peripheral Interface Operation
CPI drivers support two modes of operation,
Transparent Mode, and API mode.
Transparent Mode allows existing applications
to apply DSNA without modifications and
achieve high-performance capability.
Transparent Mode does not give users the full
range of DSNA features. API mode makes the
full feature set available to the user.
Applications that use Transparent Mode issue
OPEN, CLOSE, IOCTL, READ and WRITE

calls to a mount point. The mount point
configuration/access table insures that the call
is routed to the CPI file system interface
where it is converted to CPI commands. Two
classes of storage device are supported, tape
and disk. The API mode is a programmatic
interface to the CPI Driver that uses calls to
OPEN, CLOSE, READ, WRITE, IOCTL and
CPICMD. CPICMD makes Metadata and
other DSNA capabilities available to the
application. These capabilities include file
metadata execution, and administrative data:

• Formatting and Configuration
• File Attribute Reports and Control
• Metadata Reports and Controls
• Operation and Execution Status
• Abort Execution Methods
• File Mark and Position Control
• Diagnostics and Error Logs
• Session Control
• Data Delivery Times

139

This diagram below shows the difference
between how CPI Transparent Mode and API

Mode operate within User Space (Application
level) and Kernel space (CPI level).

USER SPACE
API Path

Application API CPI Daemon

Transparent Path

File System
Interface

CPI Module
Network Driver

KERNEL

Common Peripheral Interface Operation

API Mode
Details of the API Mode operation are
presented in the next diagram. The CPI
daemon process and the user application that
calls the API are independent UNIX processes.
The API code runs as part of the application
and communicates with the CPI daemon
through UNIX inter-process communication
facilities. The CPI daemon can service
multiple applications allowing several
simultaneously accesses to the same NPA
storage device. The API is a socket

connection interface through which the CPI
daemon and application communicate. The
CPI daemon spawns a child process for each
socket connection and returns the results to the
application. The socket connection is used to
communicate the API commands and
responses. The transfer of data, defined in the
API call, takes place through shared memory.
The socket connection alerts the CPI daemon
to associate an area of shared memory with
the application that is used for the data
transfer.

140

to the NPA

or SNC using
HIPPI, FC, etc.

User space

Kernel Network Driver

Network
Process

CPI Main

C P I Daemon

Child
Processes

User
Appl’n.

User

Appl’n.

Shared Memory

C P I
Protocol
Machine

CPI Protocol

OPEN, CLOSE,
READ, etc.

A P I

A P I

Data
Path

Transparent Mode
The file system appears to be local to the
UNIX client in the CPI Transparent Mode.
UNIX commands operate normally even
though files are maintained on the NPA and
available through the network. The CPI Driver
uses the mount point identifier to route the file
request to the CPI file system. Through the
CPI file system, requests are converted to
CPI/DSNA protocol and issued to the network
driver which then delivers them to the NPA.
The NPA processes the request and delivers

the data to the destination device through the
bus-mastered interface. The CPI file system
operates as a Virtual File System within UNIX
and supports all the attributes of a local file
system. The Local UNIX file system
processes client application requests and
routes the requests through the UNIX Vnode
Interface to the CPI file system as shown in
the diagram that follows. The CPI file system
is architected into UNIX in the same way
other file systems like NFS integrate.

141

Application

User Space

KERNEL

Local UNIX File System

UNIX VNODE Interface

CPI File System Other

File System Driver API File
Systems

Network Driver
(HIPPI, Fibre Channel, etc.)

File System
Interface

The CPI file system supports features that are
common to the Local File System. A
configuration/access file is used to enforce
system security through encrypted NPA
address IDs, license keys, and passwords.
Metadata maintained at the NPA, controls file
access modes including locking, and
maintains user ownership, group ownership,
authorization, and privilege information that
manages user files. Files that are shared by
multiple clients can be locked at different
levels including NO locking, READ/WRITE
locking, and WRITE locking. The default is
lock on WRITE.

CPI supports multiple concurrent accesses
from different network attached clients but it is
also envisioned to support multiple accesses
from a single client. The initial

implementation of the architecture is limited
to a single shared file handle per client but
future releases will enable separate file
handles to be created for each of multiple file
accesses made by a client. This capability
will permit concurrent parallel processing
applications to be performed on distinct
extents of a file by a single client.

Other File Systems
DSNA is structured to operate within several
different file systems based on the mount point
that is selected. The simplest format for
operating with file systems other than the CPI
file system, like NFS, and SGI’s BDS, is to
define and allocate specific disk partitions and
tape volumes to each system. The first
implementations of DSNA will default to this
simple strategy. More general
implementations of DSNA can be developed
that eliminate the need for separate partitions
and allow data to be shared across file
systems. The Windows NT operating system
supports an NT Redirector that allows
Personality Module drivers to be written and
installed that ‘redirect’ file accesses for
selected mount points from the ‘other file
system’ to CPI. A client application that
chooses to operate through NFS or FTP, for
example, is able to do that by defining
specific mount points for NFS files to be
managed through CPI. The NT Redirector
diverts the file access control from NTFS to
CPI in the NPA and allows the file to be
opened at the NPA as a CPI file and at the
client application as an NFS file. Clients
attached to networks that support TCP/IP such
as Gigabit Ethernet and future releases of the
Essential Communications HIPPI Card can
apply the network performance benefits of CPI
to standard current applications.

DSNA Integration
DSNA has initially been integrated as a high-
performance network storage node in a High
Performance Storage System (HPSS) at The
Caltech Center for Advanced Computing
Research by connecting a 72 GB FibreRAID
through an NPA to the HIPPI network. The
HPSS server provides native support for third-
party IPI-3 disk which allows direct data
transfers to be setup and executed from the
HPSS server to create a data flow path
directly between the disk and the client
application and avoid the performance lag
caused by staging the data through multiple
memory read operations. A very similar
configuration is planned for integration at the

142

Lawerence Livermore National Laboratory in
May of 1997. These integrations do not
initially explore the full capabilities of the
DSNA because they are limited to direct IPI-3
connection and do not exploit the data sharing
capability provided by the CPI file system.

The first applications that take advantage of
CPI will be with SGI client systems.
Integrations are currently planned at NASA
Ames and at the University of Minnesota that
will operate with CPI in the Transparent Mode
and provide the capability for multiple SGI
clients to share files. Plans are in the
formulation stage for similar CPI integrations
with HP Convex, SUN Systems, and CRAY.
These implementations will provide shared-
data operation across the multiple UNIX
clients and the multiple client types that
provide a Virtual File System Interface.

Ken Fallon is Project Director for development
of DSNA. Bill Bullers is Systems Engineering
Director. Bill and Ken can be reached by email
at the following: billb@impactdata.com and
kenf@impactdata.com. Impactdata is a wholly
owned subsiderary of DATATAPE Incorporated.

